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Abstract – An equation of state for an ideal gas with a small number of particles is studied. The
resulting equation is found to differ from that expected in conventional thermodynamics, which
is strikingly illustrated when considering the traditional thermodynamic problem of Maxwell’s
demon. We clarify the mechanism of this different feature of thermodynamics arising in small
systems.
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The thought experiment by Maxwell [1] known as
Maxwell’s demon has attracted the attention of physicists
for more than a century [2]. Maxwell’s demon is a well-
known paradox based on the fundamentals of thermo-
dynamics, which seemingly permits a violation of the
second law of thermodynamics. In the original thought
experiment, we are asked to imagine a demon that
controls a gate between two compartments. Being able to
determine the speed of the particles in each compartment,
the demon opens the gate in such a way as to collect more
high-speed particles in one compartment, thus decreasing
the entropy of the system, in seeming violation of the
second law. About half a century after Maxwell, Szilard
extended Maxwell’s demon, devising a model which
allowed quantitative description on the extracted work [3].
The framework of Szilard’s formulation is depicted in

fig. 1. One thermal molecule is in an isothermal system
and the cycle of Maxwell’s demon is considered to be
composed of two processes: 1) measurement (observation)
of the molecule position and 2) isothermal expansion in
the process from state B to C. By measurement, the
demon determines whether the molecule is on the left or
right side and inserts a wall to create a piston, which is
accompanied by a mechanical load (weight) for extraction
of work. In this way, work of an amount W = kBT ln 2 can
be extracted from the system by isothermal expansion.
Through cyclic operation, i.e. following the process from
states A→B→C→A, work is perpetually extracted
out of the isothermal system. The operation transfers
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Fig. 1: Conventional scheme of Maxwell’s demon, after Szilard
(1929) [3].

ambient thermal energy into work through the isothermal
expansion of the “piston”, resulting in a decrease in
entropy, kBln 2. In order to save the second law, Szilard
described how the entropy decrease would be compensated
“. . . if the execution of such a measurement were, for
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instance, always accompanied by production of k ln 2 units
of entropy” [3].
As has recently been pointed out [4], Szilard did not

prove his compensation theory, but assumed that his
heat engine would always preserve the second law. Most
studies of Maxwell’s demon have followed the theoretical
framework of Szilard [2], and have focused on the energy
cost of observation [5]. In such studies, it is generally
assumed that, for ideal gases, one can extract work, W ,
even for a one-molecule isothermal piston, of an amount

given by the relation W =
∫ Vf
Vi
P (V )dV = nRT ln (Vf/Vi),

where P is the pressure, n is the number of molecules
in a mole, R is the gas constant, T is the temperature,
and Vi, and Vf are the initial and final volumes of the
piston, respectively [6]. Thus, the conventional equation
of state for an ideal gas has been implicitly assumed:
PV = nRT . In other words, studies of Maxwell’s demon
have generally been performed within the framework
of conventional macroscopic thermodynamics, regardless
of the small number of molecules [7].
On the other hand, recent experimental developments

have enabled experimental observation of even a single
molecule in some situations. In molecular motors [8–10]
the value of the work extracted in an elementary process
fluctuates over repeated experiments, which is in contrast
to the thought experiment of Maxwell’s demon. This
suggests that there may be an essential fault in the basic
assumption of Maxwell’s demon on this scale, because
an essential experimentally observed feature of a small-
scale system, thermal fluctuation, has not been properly
accounted for. In addition, recent studies that describe the
energetics in thermally fluctuating systems have shown
that there is another way of describing the thermo-
dynamics of small systems kinetically without employ-
ing entropy [11]. From this background, a question was
recently raised by Hatano and Sasa [12] as to the validity
of the assumption of the work extracted in Szilard’s
model. The study was an attempt at quantitative esti-
mation of the work extracted in an operational manner,
which is in contrast to conventional thought experiments.
Although their study was a pioneering one, the model
resulted in broken detailed balance even in the equilibrium
state.
In this paper, we analyze the equation of state in an

extremely small system, within the boundary of kinetics.
We discuss an equilibrium process here; however, an inter-
esting aspect of relaxation into equilibrium is discussed by
Crosignani and Porto [13]. We show that the equation of
state that Szilard and others have assumed for isother-
mal expansion is not appropriate. We clarify the theo-
retical origin of the difference between an extremely small
system and conventional macroscopic systems towards the
construction of a system of thermodynamics for small
systems [7].
We begin with an estimation of the equation of state of
one molecule because typical features of small systems are
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Fig. 2: One-dimensional system composed of thermal particles
and a movable piston. The force of a constant load, f , on
the movable piston competes with the “pressure” of thermal
particles.

expected at this limit. In order to derive the equation, we
must confine ourselves to a concrete model that permits us
to treat the system only within the framework of kinetics.
As in the study by Hatano and Sasa [12], we consider
a one-dimensional piston in thermal equilibrium (fig. 2),
where the dynamical variables are N “thermal particles”
and a movable piston on one side. By replacing the volume
V by the distance between the wall and the movable piston
X, n by N/na, and R by nakB, we obtain the equation
of state for the system, PX =NkBT , where na and kB
are the Avogadro constant and the Boltzmann constant,
respectively.
Hatano and Sasa claimed that for ideal gases the

equation of state depends on the masses of the thermal
particles and the piston and that the conventional equa-
tion of state is valid if the ratio of the mass of the piston
to that of the particle is sufficiently large. However, we
found, by the method of stochastic energetics [11], that
in the study by Hatano and Sasa, there is a finite current
between two thermal baths, one of which is in contact with
a thermal wall and the other of which is in contact with a
movable piston, resulting in the broken detailed balance.
We can learn from this that we cannot naively utilize a
“hybrid” model, for example, Langevin dynamics (for a
piston) and Hamiltonian dynamics (for a thermal particle)
simultaneously, because Langevin dynamics is a coarse-
grained description of Hamiltonian dynamics [14]. In
order to maintain self-consistency in a class of descrip-
tion, we should return to the framework of elementary
mechanics.
In most literature on Maxwell’s demon, it is assumed

that we can fix a movable piston by applying an external
force of the same value as the conventional (internal)
pressure. This assumption fails in a small system, as
discussed later. Thus, we replace the coarse-grained quan-
tity “pressure” P by the mechanical force f externally
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exerted on the piston. This yields a reference equation,
fX =NkBT , which we will use to discuss the validity of
the conventional equation of state, and hence the validity
of the frameworks of the previous studies. We assume
that collisions between the variables (particle(s) and a
piston) are perfectly elastic and that the movable piston is
frictionless, since “friction” is also a coarse-grained quan-
tity which must be excluded for consistency. Then, the
total energy of the system of one thermal particle (N = 1)
is written as

E =
p2t
2m
+
p2p
2M
+ fX, (1)

where m(pt) and M(pp) are the masses (momenta) of the
thermal particle and the piston, respectively, and f is a
force applied to the movable piston. To keep the system
isothermal, a thermal wall [15] is introduced. The particle
is reflected with a positive random velocity according
to Maxwell’s velocity distribution at the boundary of
the system, x= 0, where x is the position of a thermal
particle. The thermal wall realizes thermal equilibrium
of the system. Because the system is one-dimensional,
the thermal particle is always lower than the piston,
x�X.
One naively expects that the equation of state for

one molecule should be obtained by replacing N by 1 in
the reference equation fX =NkBT ; namely fX = kBT .
The extension of conventional thermodynamics into
those of one molecule has been performed since Szilard [3].
In the following, we will investigate the validity of this
extension in order to uncover the nature of thermo-
dynamics for a few molecules. Three methods of analyses
are performed independently: 1) numerical simulation,
2) Master equation analysis, and 3) Gibbs’ statistical
mechanics.
In the simulation, the system obeys Hamiltonian

dynamics with the exception of the thermal wall, in which
the thermal particle is reflected with a random velocity

within the velocity distribution m|v|
kBT
e−mv

2/2kBT (v > 0)
when the particle arrives at the boundary x= 0. The
condition of the thermal wall is known to direct the target
system into thermal equilibrium [15]. The numerical
simulation revealed that the equation of state for one
molecule is in fact

f〈X〉= 2kBT, (2)

where the angular brackets indicate an average value.
This result is obviously different from that which is
conventionally assumed.
We obtained the same analytical result using the Master

equation of the distribution function in a phase space,
which consists of Liouville terms and collision terms. Let
ρ(x, v,X, vp) be the probability density of the particles
(a thermal particle and a movable piston), and v and vp
the velocities of the thermal particle and movable piston,

respectively. Here we use velocities instead of momenta
for simplicity. The density function obeys the following
equation:

∂ρ(x, v, X, vp)

∂t
=

− v ∂ρ
∂x
− vp

∂ρ

∂X
+
f

M

∂ρ

∂vp

− θ(v− vp)(v− vp)ρ(x, v,X, vp)δ(x−X)
+ θ(vp− v)(vp− v)

× ρ
(

x,
m−M
M +m

v+
2M

M +m
vp, X,

2m

M +m
v+
M −m
M +m

vp

)

× δ(x−X). (3)

The first three terms of the R.H.S. of this equation
come from the Liouville equation and the last two
terms come from collision effects. A stochastic boundary
condition is applied to the system at one end, that

is, ρ(x=+0, v) = f
T

√
m√
2πT
exp[−mv2/2T ] for v > 0. The

stochastic condition corresponds to the thermal wall in
the numerical simulation. From straightforward calcula-
tion, one obtains a stationary solution, ρ(x, pt, X, pp) =

f2

2π(kBT )3
√
mM
exp{−(p

2
t/2m+p

2
p/2M+fX

kBT
)}θ(X −x), where

θ is a Heaviside step function. From this equation, we
again obtain eq. (2). Note that the result is independent
of the masses of both the thermal particle and the
movable piston, which is in contrast to the result by
Hatano-Sasa [12].
Although we introduced a thermal wall and, corre-

spondingly, a stochastic boundary condition, one may
obtain the same generalized result without applying such
boundary conditions, but instead using conventional
Gibbs’ statistical mechanics. Since the present system
has two constant parameters, temperature and force
(applied to the piston), the system can be described by
a pressure ensemble (P-T ensemble) of Gibb’s statistical
mechanics [16]. The quantity “pressure” in a conventional
pressure ensemble is replaced here by a force. This
replacement does not alter any general result of the pres-
sure ensemble, because one can reprove any derivation in
the pressure ensemble with this replacement. The Laplace
transformation between a partition function of the canon-
ical ensemble Z and that of the pressure ensemble Y is
given as Y =

∫∞
0
dV exp[−PV/(kBT )]Z [16], from which

we obtain the partition function of the pressure ensemble
of the system of N particles, Y = F (kBTf )

N+1, where F
is a factor that will drop out later. The average position
of the movable piston is obtained as 〈X〉=− 1

kBT
∂ lnY
∂f =

(N +1)kBT/f. Thus, we have f〈X〉= (N +1)kBT. The
previous result, f〈X〉= 2kBT , is again obtained by replac-
ing N by 1. One finds that in a sufficiently large system,
N ≫ 1 (thermodynamic limit), N +1 may be replaced
by N . However, in the small system, the difference
between N +1 and N is crucial, as shown in fig. 3.
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Fig. 3: The dependence of the number of particles, N , on
the time average of the position of the piston, where kB =
T = f = 1 for simplicity. For comparison, the average position
is normalized by N . If the reference equation of state,
fX =NkBT , were valid for any N ,〈X〉/N would remain as 1.

This result is apparently in contrast to the basic
assumption made by Szilard and others, in which the
macroscopic thermodynamic relation is assumed to
hold even in a small system, namely, fX = kBT for
one molecule. In such studies, we find that it has been
assumed that one can “fix” or quasi-statistically “control”
the position of the piston, where the existence of the
working bath (or “working reservoir”) [17] behind the
piston is implicitly assumed. However, for a small system,
the question as to how one can fix or control the piston
in an operational or experimental manner should be
carefully examined [18]. The validity of the concept of
the working bath is not evident in small systems [11].
If one fixes the position of the piston, that is, if one
eliminates the variability of the piston, work cannot
be extracted out of the system because the “fixed”
piston cannot transfer thermal energy into work. Such a
framework is in contradiction to, and thus is no longer
physically valid in, studies of Maxwell’s demon. This is
precisely the reason why we introduced an external load
to the piston instead of using the concepts of “pressure”
or a “working bath”. It should also be noted that the
movable piston satisfies the thermal property (Maxwell’s
velocity distribution) merely through kinetic collision
with a thermal particle. The evidence supports the
physical consistency of the present description.
In the following paragraphs, we will present the role of

thermal fluctuation as it essentially relates to the equation
of state [19]. We have the distribution function in phase
space, ρ= F ′e−fX/kBT θ(X −xN )θ(xN −xN−1) . . . θ(x2−
x1), where F

′ and xi are a factor and the position of the
i-th thermal particle (X � xN � . . .� x2 � x1), respec-
tively. By integrating all the spatial coordinates, except
for that of the movable piston, X, we obtain the distribu-
tion function of the movable piston:

ρ(X) =
1

N !

(

kBT

f

)N+1

exp

{

−fX −NkBT lnX
kBT

}

. (4)
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Fig. 4: Distribution function of the position of the movable
piston, where kB = T = f = 1 and the horizontal axis is normal-
ized by N for simplicity. As the number of particles decreases,
the deviation from the most probable position, X∗/N = 1,
becomes substantial. For comparison, the position is normal-
ized by the number of thermal particles, N .

Now, we define the coordinate X =X∗ where the distri-
bution function ρ(X) is maximum. From eq. (4), we get
the relation X∗ =NkBT/f . Thus, the conventional
thermodynamic relation fX =NkBT still remains for
the most probable position of the piston, X∗, although
it does not hold for the average position. The reason
why the average position of the piston deviates from the
most probable position, X∗, is that thermal fluctuation
of the piston is substantial for small systems, as seen by
the relation

√

〈(X −〈X〉)2〉/〈X〉= 1/
√
N +1. Figure 4

shows the distribution function of the movable piston for
three different quantities of thermal particles (N = 1, 10,
and 100), where the horizontal axis is normalized by N .
As the number of particles decreases, the fluctuation from
the most probable position, X =X∗, and simultaneously
the asymmetry of the distribution function, increase,
while the most probable position of the piston continues
to obey the conventional equation of state. Thus, the
average equation of state deviates from the conventional
one as the number of particles decreases. An interesting
question relevant to any technique that reduces the
thermal fluctuation of one molecule, as applied in probe
microscopy [20], may arise here: Which position does
the frozen position of a molecule correspond to, the most
probable position or the average position obtained before
the reduction in thermal fluctuation?
We can learn here the features of the concept of a

“quasi-static process” in extremely small systems. Szilard
and others implicitly assumed that the expansion process
could be described in the same quasi-static framework
as its macroscopic counterpart. However, the condition
of a quasi-static process requires a completely different
framework at the microscopic level from that at the
macroscopic level [18]. A quasi-static condition always
requires that a system should itinerate all the possible
phase space sufficiently under the current parameters of
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the system. For this requirement, the system parameters
should vary slowly enough during a quasi-static thermo-
dynamic process. In our case, what should vary slowly is
not the position of the piston but the force, f . In the
expansion process, the piston moves rapidly following a
slow change in the force. Thus, the conventional picture
of a gradually expanding piston does not correspond to
quasi-static expansion in small systems. Szilard and others
had not anticipated this fact.
In this paper, we showed in the framework of Szilard’s

model that the equation of state for a few molecules is
different from that previously assumed by Szilard and
others. In the thermodynamic limit, the equation of state
is found to coincide with the conventional equation of
state1. The result reveals that the macroscopic framework
of thermodynamics has been incorrectly extended into
the one molecule world, which has been assumed in the
literature of Maxwell’s demon.
This counterexample to the basic assumption of

Maxwell’s demon brings to light the need to develop the
thermodynamics of small systems [11]. This is important
not only for Maxwell’s demon but also for proper inter-
pretation and modeling of one-molecule experiments, in
which the experimental data vary among observations.
One-molecule thermodynamics is not a rescaled version
of its macroscopic counterpart [21]. Filling the gap
between one-molecule thermodynamics and macroscopic
thermodynamics should be an interesting challenge from
both philosophical and practical viewpoints of physics.
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