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PREFACE

The present book has twofold purposes. First, the book is intended to be a monograph on heavy
electrons which have been the focus of very active experimental and theoretical studies in the last two
decades. Heavy electrons are found among a number of lanthanide and actinide compounds, and are
characterized by a large effective mass which becomes comparable to the mass of a muon. The heavy
electrons exhibit rich phenomena such as smooth crossover to local moment behavior with increasing
temperature, unconventional superconductivity, weak antiferromagnetism and pseudo-metamagnetism.
Although some mysteries still remain, the authors feel that a reasonably coherent understanding is
available of heavy electrons as a whole. Therefore the time is ripe to survey the properties of heavy
electrons from a global and unified point of view.

The physics of heavy electrons is one of typical examples where intimate interaction between theory
and experiment has disclosed step by step the origin of seemingly incredible behavior of electrons.
One (Kuramoto) of the present authors has been engaged in formulating a theoretical scheme which is
now widely applied to magnetic impurities and heavy electrons and, among other things, has derived
dynamical response functions. The other author (Kitaoka) has been doing NMR experiment on heavy-
electron systems and has found formation of metallic, insulating, superconducting and weakly magnetic
phases of heavy electrons through the NMR. Thus the authors think it appropriate for them to write
a book which focuses on dynamical aspect of heavy electrons. In view of the innumerable and diverse
activities in the field, the authors do not try to cover every aspect on equal footing, although they do
try to touch upon important thermodynamic and transport results.

The second purpose of the book is to serve as an advanced textbook on theoretical and experimental
physics of strongly correlated electrons. The necessity to understand fascinating experimental results on
heavy electrons has stimulated intensive theoretical efforts to go beyond existing schemes. It has turned
out that many established ideas and techniques are insufficient to understand heavy electrons. On the
theoretical side, enormous amount of quantum fluctuations has brought disaster to celebrated mean-field
theories. On the other hand, extreme experimental condition has been required such as applying strong
magnetic field and pressure at ultralow temperatures. Thus heavy-electron systems have been a target of
a case study for applying and testing almost all tools in theoretical and experimental condensed-matter
physics. Those graduate students and researchers who want to work on strongly correlated condensed-
matter systems will find in the book many examples how the conventional concepts on solids work or do
not work in heavy-electron systems. Although we try to make the book self-contained for those readers
who have the knowledge of condensed matter physics in the undergraduate level, they may sometimes
find the description of the book too concise. We advise consulting available textbooks on elementary
many-body physics in such a case.

The book tries to build coherent picture of heavy electrons out of collection of apparently diverse
experimental and theoretical results. However the authors do not intend to be exhaustive in citing papers,
nor to be excessively on the alert for a report made yesterday. At any rate a monograph cannot compete
with a review in scientific journals for covering newest findings. Instead the book tries to provide an
entire outlook which should be especially useful to newcomers to the field of strongly correlated electrons,
either experimental or theoretical, and tries to help them to initiate a new stage of investigation. Thus
the book emphasizes new theoretical methods and concepts which might be effective also in other related
areas. It also emphasizes the utility and limitation of dynamical information brought about by the NMR
and neutron scattering. Special attention is paid to similarity to other strongly correlated systems like
the copper oxide high-temperature superconductors. Since the research area of heavy electrons is vast,
our treatment inevitably reflects our favorite choice of the topics, and pays unavoidable attention to our
own contribution to the field. We would apologize those authors whose contributions are not touched
upon, or are not treated properly. Especially we have omitted many topics on transport, thermodynamic
properties, and dynamical measurements other than NMR and neutron scattering.

As an exiting monograph on Kondo effect and heavy electrons, we mention a book by A.C. Hewson
(Cambridge 1993). The present book puts more emphasis on the side of periodic systems rather than
magnetic impurities, and also on experimental aspects. Hence we hope that the present monograph
serves complementary to Hewson’s book. To make the book of reasonable size we have to omit some
interesting theoretical topics like the Bethe ansatz and the conformal field theory. These topics are
extensively dealt with by other monographs.

The content of the book is arranged as follows: Chapter 1 presents first the phenomena of heavy
electrons from thermodynamic measurement, and then introduces the two basic pictures of electrons in
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solids: itinerant and localized states. These pictures represent opposite limiting behaviors of electrons
and do not reconcile with each other at the naive level. A brief account of the Fermi liquid theory is
given. Basics of NMR and neutron scattering experiments are explained.

Chapter 2 deals with the single magnetic impurity problem. The Kondo effect is discussed from various
viewpoints; scaling, 1/n expansion, local Fermi liquid, and so on. We emphasize the effective Hamiltonian
approach which includes the concept of the renormalization group. The local non-Fermi liquid state is
treated with emphasis on the unique excitation spectrum. Detailed experimental results are presented
which can be interpreted without taking account of the intersite interactions among f-electrons.

In Chapter 3 we turn to periodic systems where heavy electrons are formed. Experimental facts on both
metallic and insulating systems are presented. Although the metallic ground state is basically understood
by the Fermi-liquid picture, the system shows strange behaviors in a magnetic field. We present intuitive
ideas and theoretical apparatus to understand the basic features of heavy electrons. Practical methods to
compute physical quantities such as the density of states and the dynamical susceptibility are explained.

These two chapters as a whole represent complementary approaches to heavy electrons from local
and itinerant limits. In Chapter 4 we discuss the anomalous magnetism which emerges as a result of
complicated interference between quasi-particles. The relevant phenomena include the weak antiferro-
magnetism with tiny ordered moments, and the orbital ordering accompanying quadrupole moments.
Alternatively, the anomalous magnetism is interpreted as coming from competition between the Kondo
screening and the intersite interaction, if one takes the viewpoint from high temperatures. Although
there is no established understanding of these phenomena, we present a possible view which empha-
sizes the dual nature of electrons with strong correlations; simultaneous presence of both itinerant and
localized characters.

Chapter 5 deals with superconductivity of heavy electrons. We begin with introductory treatment of
anisotropic pairing in general and symmetry classification of singlet and triplet pairings. Then detailed
review of experimental situation is given for representative superconducting systems. Emphasis is put on
the interplay between superconductivity and anomalous magnetism, and subtle coupling to the lattice
degrees of freedom.

In Chapter 6 we compare heavy-electron systems with some cuprates which show high-temperature
superconductivity. The latter system also has strongly correlated electrons, but the parameters charac-
terizing the electrons are rather different from heavy electrons. Interestingly, some dynamical properties
such as the NMR relaxation rate below the superconducting transition shows similar temperature depen-
dence if one scales the temperature by the transition temperature of each system. We discuss similarities
and differences between these two systems, and pursue a picture for unified understanding of strongly
correlated electrons including non-Fermi liquid states.

In Appendices, we summarize theoretical techniques frequently used in the many-body theory. They
constitute a compact treatise which should be understandable independent of the content of the main
text.

It took us an unexpectedly long time to finish this book. During this period we have been benefited by
discussion with our colleagues and friends. We are grateful to all of them for helping our understanding on
the subject, and especially to Erwin Müller-Hartmann who introduced one of the authors (Kuramoto) to
the early stage of the field 20 years ago, and to Kunisuke Asayama and Hiroshi Yasuoka who introduced
the other author (Kitaoka) to the field of NMR in condensed matter physics. We acknowledge fruitful
cooperation with and valuable suggestions by Jacques Flouquet, Kenji Ishida, Yusuke Kato, Hiroaki
Kusunose, Frank Steglich, Hideki Tou and Hisatoshi Yokoyama. Special thanks are due to Frank Steglich,
Yusuke Kato and Stephen Julian who read the first manuscript and made a number of constructive
remarks to improve the book.

Yoshio Kuramoto
Yoshio Kitaoka
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Chapter 1

Fundamental Properties of Electrons
in Solids

1.1 What are Heavy Electrons?

Electrons in metals have an effective mass m∗ which is in general different from the mass m0 = 9.1 ×
10−28g in vacuum. Experimentally, the effective mass can be measured by such methods as cyclotron
resonance, de Haas-van Alphen (dHvA) effect, specific heat and so on. The temperature dependence of
the specific heat C much below room temperature is usually fitted in the form

C = γT + βT 3, (1.1)

where the second term comes from lattice vibrations in ordinary metals. In the free electron model of
metals with the spherical Fermi surface, γ is given by

γ =
π2

3
k2

Bρ∗(µ), (1.2)

where kB denotes the Boltzmann constant and ρ∗(µ) = m∗kF /(π2h̄2) is the density of states at the
Fermi level µ. For a general shape of the Fermi surface, the effective mass in the above formula should
be interpreted as the average over the Fermi surface with the same volume enclosed as that of a sphere
with radius kF . The spin part χ of the magnetic susceptibility at low temperatures is also determined
by ρ∗(µ). Namely we obtain

χ = (gµB)2ρ∗(µ), (1.3)

where g is the g-factor close to 2 and µB = eh̄/(2m0c) is the Bohr magneton.
In simple metals such as K or Al, γ is of the order of mJ/(K2 mol). This means that the effective mass

is of the order of m0. However in some materials it becomes larger than m0 by as much as three order of
magnitudes. As an example, the temperature dependence of γ is shown in Fig.1.1 for CexLa1−xCu6 with
varying Ce concentrations [1, 2]. We interpret the large γ as coming from the large effective mass, since
kF is determined by the density of conduction electrons which is of the order of 1022cm−3 independent
of metals. Hence these compounds are called heavy-electron (or heavy-fermion) systems. The validity of
this interpretation depends on the Fermi-liquid theory to be explained later. It is remarkable that these
data fall on a single curve if it is divided by x. This means that each Ce ion contributes to the enhanced
specific heat rather independently. In other words, possible intersite interaction among Ce ions does not
play an important role in γ. Thus the steep increase of γ below 10 K is essentially a single-site effect.

The magnetic susceptibility for various Ce concentration is shown in Fig.1.2. Like the specific heat,
the susceptibility per mole Ce is almost independent of x up to 0.9 [1]. In general, thermodynamic data
point to the importance of the single-ion effect. Most of apparent deviation from the single-ion behavior
can be understood with account of change of the lattice parameter and other peripheral effects. As we
shall discuss in detail later in this book, the origin of heavy effective masses is traced back to strong local
correlations. The Kondo effect is the keyword to understand all the anomalous properties in a universal
fashion, as we shall explain in detail later.

Table 1.1 summarizes the values of γ and χ for representative compounds. The average valency of Ce

7



8 CHAPTER 1. FUNDAMENTAL PROPERTIES OF ELECTRONS IN SOLIDS

Figure 1.1: Temperature dependence of 4f -derived specific heat per mole of Ce as Cm/T plotted against
T for CexLa1−xCu6 with x = 1 (⃝), 0.8 (2) and 0.5 (×)[1]. Inset indicates low-T data. Dashed curve
is the calculation for an S=1/2 Kondo impurity with TK=4.2 K.

Figure 1.2: Temperature dependence of the magnetic susceptibility per mole of formula unit for
CexLa1−xCu6 [1].
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system χ(10−3 emu/mol ) γ (mJ/mol K2)
CeCu6 80 (c) 1600 [1]

CeCu2Si2 8 (c), 4 (ab) 1100 [3]
CeRu2Si2 30 (c) 350 [4]

UBe13 13 1100 [5]
UPt3 4 (c), 8 (ab) 400 [6]

Table 1.1: Low-temperature susceptibility and specific heat coefficient of some heavy electron systems.
The susceptibilities along the c-axis, shown as (c) in the table, and in the ab-plane shown as (a) can be
different in non-cubic systems.

Figure 1.3: Temperature dependence of magnetic resistivity[1] per mole of formula unit for CexLa1−xCu6.

and Yb in heavy electron systems is very close to 3+. However in some Yb materials which have smaller
values of γ of the order of 102mJ/(K2mole), the average valency is between 2+ and 3+. These systems
are called intermediate valence compounds. Since the valency fluctuates quantum mechanically between
2+ and 3+, the phenomena are also called valence fluctuation, a term with emphasis on the dynamical
aspect.

Transport properties of these materials also show unusual temperature dependence. As an illustration,
Fig.1.3 shows the temperature dependence of the magnetic part of the resistivity for CexLa1−xCu6 [1].
The magnetic part is obtained by subtracting the resistivity of LaCu6 with no f electrons. In the
dilute limit, nearly logarithmic increase of the resistivity is observed over more than two decades of
T . This is a typical signature of the Kondo effect. On the other hand, in the pure limit of CeCu6,
this logarithmic dependence disappears with T → 0. Instead the T 2 law of the resistivity takes place.
The latter behavior is typical of itinerant electrons with strong mutual interaction. Thus the resistivity
of CexLa1−xCu6 depends on x in a way completely different from those for the specific heat and the
susceptibility.

In order to study how the heavy electrons are realized in condensed-matter systems, and how one can
understand very rich properties of them, we begin in the following with fundamental consideration about
electrons in solids. From this point on we take units such that h̄ = kB = 1 to simplify the notation
except for deriving numerical values with a dimension.

1.2 Itinerant and Localized States

Real solids are quantum many-body systems consisting of a large number of atomic nuclei and electrons.
We simplify this complicated system by keeping only those degrees of freedom which are essential to
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Figure 1.4: Schematic view of the charge density of electrons: (i) the case of a ≪ aB, and (ii) a ≫ aB.

realize the most fundamental properties of electrons in solids. In order to clarify the point step by step
we begin with the simplest model that shows the essence of itinerant as well as localized natures of
electrons in solids. Consider the simple cubic lattice of hydrogen atoms. We assume for simplicity that
protons have no spin and are fixed at lattice points Ri with distance a from the nearest neighbors. By
this simplification we neglect the effect of lattice vibrations present in real solids. The hydrogen lattice
does not have incomplete atomic shells with 3d, 4f or 5f orbitals which are important for the occurrence
of heavy electrons. These complications will be discussed in later chapters.

The Hamiltonian is given in the second quantization by

H =
∑

σ

∫
drΨ†

σ(r)[− ∆
2m

−
∑

i

v(r − Ri)]Ψσ(r) +
1
2

∑
i̸=j

v(Ri − Rj) + VC (1.4)

where Ψσ(r) is the field operator of electron with spin σ, v(r) = e2/|r| and VC is the Coulomb interaction
among electrons given by

VC =
1
2

∫
dr

∫
dr′v(r − r′)

∑
σ,σ′

Ψ†
σ(r)Ψ†

σ′(r′)Ψσ′(r′)Ψσ(r). (1.5)

Two extreme cases are considered: (i) a is much smaller than the Bohr radius aB = 1/(me2), and (ii)
a ≫ aB. Figure 1.4 illustrates the charge density of electrons in each case.

1.2.1 Formation of energy bands

In the case (i) the wave functions of each 1s state overlap with each other substantially. As a result,
mixing with 2s, 2p and higher orbitals is so significant that the wave function is better constructed
from plane waves. The kinetic energy of electrons is the most important part and the fluctuation
〈(nσ(r)−〈nσ(r)〉)(nσ′(r′)−〈nσ′(r′)〉)〉 of the operator nσ(r) = Ψ†

σ(r)Ψσ(r) becomes small as compared
with 〈nσ(r)〉〈nσ′(r′)〉. Then the simplest approximation is to replace the electron-electron interaction
by a mean-field acting on nσ(r). Namely we approximate

Ψ†
σ(r)Ψ†

σ′(r′)Ψσ′(r′)Ψσ(r) ∼ nσ(r)〈nσ′(r′)〉 + 〈nσ(r)〉nσ′(r′) − 〈nσ(r)〉〈nσ′(r′)〉. (1.6)

This is called the Hartree approximation. Note that eq.(1.6) does not exhaust factorization into fermion
bilinear operators. The rests are called exchange terms to be explained shortly. In the Hartree approxi-
mation H is approximated by

HH =
∫

dr
∑

σ

Ψ†
σ(r)hH(r)Ψσ(r) + ED, (1.7)

where the constant ED is given by

ED =
1
2

∑
i̸=j

v(Ri − Rj) − 1
2

∫
dr

∫
dr′v(r − r′)

∑
σ,σ′

〈nσ(r)〉〈nσ′(r′)〉. (1.8)
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The effective single-particle Hamiltonian hH(r) is defined as

hH(r) = − ∆
2m

+ vH(r), (1.9)

where the one-body potential vH(r) is given by

vH(r) =
∫

dr′v(r − r′)[
∑

σ

〈nσ(r′)〉 −
∑

j

δ(r′ − Rj)]. (1.10)

We notice that the electron-ion attraction alone would give divergent potential. Only with partial
cancellation of it by the electron-electron repulsion does one have a finite potential as given by eq.(1.10).

Let’s consider the Schrödinger equation

hH(r)φn(r) = Enφn(r). (1.11)

where the eigenvalue En is indexed from the lowest one as E1, E2, . . .. Here we take the periodic
boundary condition with the dimension L of the system in each direction. Strictly speaking, the Coulomb
interaction should in this case be modified in order to meet the periodic boundary condition. We neglect
this modification since this does not influence the final result in the limit of large L. In terms of the
complete set {φn}, the field operator is expanded as

Ψσ(r) =
∑

n

cnσφn(r), (1.12)

where cnσ is the annihilation operator. The N -body ground state |g〉 with N even is constructed from
the vacuum |vac〉 by filling N/2 states for each spin:

|g〉 =
∏
σ

N/2∏
n=1

c†nσ|vac〉. (1.13)

In the first quantization the state |g〉 is represented by a single Slater determinant. The electron density
is given by

〈nσ(r′)〉 =
N/2∑
n=1

|φn(r′)|2, (1.14)

which in turn determines the Hartree potential vH(r) self-consistently by eq.(1.10). In the ground state
the N electrons fill the lower half of the first band. The set of highest occupied k states constitutes the
Fermi surface. The volume VF enclosed by the Fermi surface is related to the electron density n = N/L3

by VF /(2π)3 = n/2.
The Hartree approximation has a weakness that vH gives nonzero electron-electron interaction even

when there is only a single electron. This is due to neglect of the quantum nature of nσ(r), the proper
account of which should exclude self-interaction of an electron. To remedy this, one should take account
of other contributions to the mean field from

Ψ†
σ(r)Ψ†

σ′(r′)Ψσ′(r′)Ψσ(r) → (1.15)

−〈Ψ†
σ(r)Ψσ′(r′)〉Ψ†

σ′(r′)Ψσ(r)−Ψ†
σ(r)Ψσ′(r′)〈Ψ†

σ′(r′)Ψσ(r)〉+ 〈Ψ†
σ(r)Ψσ′(r′)〉〈Ψ†

σ′(r′)Ψσ(r)〉. (1.16)

The approximation which keeps this contribution in addition to vH(r) is called the Hartree-Fock approx-
imation. In this case the mean field acts not only on nσ(r) but on a non-local operator Ψ†

σ′(r′)Ψσ(r).
If a magnetic order is present, 〈Ψ†

σ′(r′)Ψσ(r)〉 may not be diagonal in spin indices. The scheme to allow
for this possibility is often called the unrestricted Hartree-Fock theory.

One obtains the Hamiltonian which is bilinear in the electron fields as

HHF =
∫

dr

∫
dr′ ∑

σ,σ′
Ψ†

σ(r)hσσ′(r, r′)Ψσ′(r′) + EDX , (1.17)

where
hσσ′(r, r′) = hH(r)δσ,σ′δ(r − r′) − v(r − r′)〈Ψ†

σ′(r′)Ψσ(r)〉. (1.18)
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EDX = ED +
1
2

∫
dr

∫
dr′v(r − r′)

∑
σ,σ′

〈Ψ†
σ′(r′)Ψσ(r)〉〈Ψ†

σ(r)Ψσ′(r′)〉. (1.19)

The one-body Schrödinger equation reads∫
dr′ ∑

σ′
hσσ′(r, r′)ψn(r′, σ′) = Enσψn(r, σ), (1.20)

which takes into account a possible spin polarization in the ground state.
The Hartree-Fock Hamiltonian HHF can have Bloch states as a self-consistent solution for the param-

agnetic state. Then the ground-state wave function is given by a single Slater determinant as in eq.(1.13).
It is noted that the self-consistent solution is not necessarily unique. Among the states given by a single
Slater determinant, each self-consistent solution satisfies the variational property that the ground-state
energy is stationary against small variation around the solution. The state that gives a local minimum
is either the ground state or a metastable state.

The average magnitude of the electron-electron interaction is much smaller than the width of the
energy band in the case (i). Thus in the zero-th approximation the Bloch picture of nearly free electrons
is valid. One can naturally ask the importance of fluctuations so far neglected. Because the excitation
has no gap in the band state, this may lead to singularities in the perturbation theory. In the one-
dimensional system, it is known that virtual transitions across the Fermi surface make the Hartree-
Fock state unstable, however weak the two-body interaction is. This is characteristic in one-dimension
because the phase space available to the particle-hole excitation is particularly large in one dimension.
In three dimensions, a small two-body interaction only perturbs the Hartree-Fock ground state. Thus
the metallic character with the Fermi surface remains. In the presence of strong two-body interactions,
the paramagnetic state may become unstable against magnetic or superconducting states. If the state
remains paramagnetic, a theorem on the Fermi liquid theory shows that the volume enclosed by the
Fermi surface is the same as the one determined by the mean-field theory [7]. However the excitation
spectrum may be drastically affected by the correlation. In the case of high electron density the difference
from the Hartree approximation is not important qualitatively. The common feature is that the ground
state is a metal with a Fermi surface.

We will come back to discuss the correlation problem in detail, but for the moment let us continue on
very elementary picture of electrons.

1.2.2 Localized states

In the case (ii) with a ≫ aB , one starts from the atomic picture of the ground state in which each
proton has an electron in its 1s orbital, and the influence from other hydrogens is a small perturbation.
In this case the ground state should be insulating. According to Mott [8], such insulating state can be
found in actual materials, although the electronic state is much more complicated than the hydrogen
lattice. In the energy band picture, the insulating state needs a long-range order of spins so that the
unit cell contains even number of electrons. In reality, some materials such as NiS remains insulating
even above the transition temperature to an antiferromagnetic state. If one applies pressure, or replaces
some constituent atoms to cause equivalent chemical effect, systems such as V2O3 [8] could be changed
into a metal. Such systems are often called Mott insulators.

We inspect whether the mean-field theory can deal with the case of a ≫ aB . If we start from the
paramagnetic ground state, the many-electron wave function given by the Slater determinant of Bloch
states give substantial probability of having both up- and down-spin electrons in a 1s orbital. However
with a ≫ aB there should be either up or down spin but not both in each 1s orbital.

Therefore we consider artificially the situation where all electrons have spin up. Also in this case the
Hartree approximation cannot deal with the situation because vH(r) cannot reproduce the potential for
the hydrogen atom. The exchange potential, on the other hand, cancels most of the direct Coulomb
interaction from the same cell. As a result the Hartree-Fock Hamiltonian reproduces the limit of weakly
coupled hydrogens as long as the spin is completely polarized.

This observation permits us to define the basis functions which are necessary to establish the localized
picture [9, 10]. Suppose we have solved the Hartree-Fock equation assuming a fully polarized ground
state. Then the lowest energy band, which consists dominantly of the 1s state at each site, is full. The
next lowest bands separated by the energy gap consist of 2s and 2p states. In the case of (ii) the gap
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should be about 0.75Ryd. From the Bloch functions ψk(r) of the lowest band we construct the Wannier
function by

wi(r) =
1√
N

∑
k

ψk(r) exp(−ik · Ri), (1.21)

which is similar to the 1s wave function at site Ri. In contrast to the atomic wave function, the Wannier
functions constitute an orthogonal set. The annihilation operator ciσ corresponding to this Wannier
state is defined by

ciσ =
∫

drw∗
i (r)Ψσ(r). (1.22)

Furthermore the eigenenergy Ek of the first band is Fourier transformed to give

tij =
1√
N

∑
k

Ek exp[ik · (Ri − Rj)]. (1.23)

Here tii ≡ ϵa represents the 1s level with a possible shift, and tij with i ̸= j is the hopping energy
between the sites i, j. Explicitly tij is given by

tij =
∫

dr

∫
dr′w∗

i (r)h↑↑(r, r′)wj(r′). (1.24)

We are now ready to represent the original Hamiltonian given by eq.(1.4) in terms of the Wannier basis.
Since the complete set has infinitely many energy bands, the number of Wannier states is also infinite.
If we are interested in the ground state and low-lying excitations, the subspace consisting of 1s states
but with arbitrary spin configurations is the most important one. We introduce a projection operator
P1s to this subspace. Then we get

P1sHP1s = H1 + H2 + EDX , (1.25)

H1 =
∑
iσ

ϵac†iσciσ +
∑

i̸=j,σ

tijc
†
iσcjσ, (1.26)

H2 =
1
2

∑
ijlm

∑
σσ′

〈ij|v|ml〉(c†iσc†jσ′cmσ′clσ − c†iσclσδjm + c†iσcmσ′δσσ′δjl), (1.27)

where
〈ij|v|ml〉 =

∫
dr

∫
dr′v(r − r′)w∗

i (r)w∗
j (r′)wm(r′)wl(r). (1.28)

Note that we use the ordering of basis in the bra as defined by 〈ij| = |ji〉† throughout the book. The
bilinear terms in H2 compensate the mean-field contribution to tij . Without the mean-field contribution,
tij would become infinite because of the long range of the Coulomb interaction. Thus the mean field is
by no means a small perturbation.

The nature of wi(r) localized around Ri makes most of 〈ij|v|ml〉 small, leaving two kinds of dominant
terms in H2: first, terms of the type 〈ij|v|ji〉 remain significant even for a pair of distant sites i and j,
and second the exchange terms of the type 〈ij|v|ij〉 for neighboring sites. The first type is called the
Coulomb integral and is responsible for the charge fluctuations like plasma oscillation and exciton-type
correlation. On the other hand the second type is called the exchange integral and favors the parallel
arrangement of spins at neighboring sites.

The simplest way to see the effect of each term on the spin configuration is to take N = 2 with the
free boundary condition, which makes possible the analogy to the hydrogen molecule. In H2 we keep
U ≡ 〈11|v|11〉, K ≡ 〈12|v|21〉, Jd ≡ 〈12|v|12〉 and equivalent ones, all of which are positive. In this case
exact solution of H1 + H2 is easily obtained. Of the six states in total, three of them are spin triplet
with energy Et = 2ϵa. Of the three singlet states, the lowest one has the energy

Es = 2ϵa + Jd + (U − K)/2 − [(U − K)2/4 + 4t212]
1/2, (1.29)

and the double occupation of a site tends to zero in the limit of a ≫ aB . In this limit U is much
larger than |t12| and K. Then we may expand the square root to first order. It is convenient to use the
projection operators Ps and Pt to the singlet and triplet pairs as given by

Ps =
1
4
− S1 · S2, Pt =

3
4

+ S1 · S2, (1.30)
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in terms of spin operators S1 and S2. Then we obtain the effective Hamiltonian to describe the singlet
and triplet states:

Hspin = EsPs + EtPt ∼ 2ϵa +
1
4
Jd − t212

(U − K)
+

[
4t212

(U − K)
− Jd

]
S1 · S2. (1.31)

The coefficient of the spin-dependent term is called the exchange interaction. Two competing effects are
present here. The part with the transfer favors the singlet pair. This is because the doubly occupied
site can occur as the intermediate state by perturbation in terms of t12. On the other hand, Jd favors
the triplet pair. This gain of energy originates from the Pauli principle which discourages the overlap of
wave functions with the same spin.

In the Heitler-London theory for the bonding of hydrogen molecule, the stability of the singlet state is
interpreted in terms of Coulomb attraction due to accumulated electrons in between the protons. The
stabilization by the kinetic exchange represents the same accumulation effect in different terms. Note
that the use of orthogonal states is especially convenient in dealing with large systems. In the case of
general N , the competing exchange mechanisms described above are also present. Since Jd decays faster
than t212 as a/aB increases, the kinetic exchange wins in the case (ii). In addition, more complicated
exchange involving more than two sites is possible. For general N we cannot expect the exact solution
even in the 1s subspace. Instead we introduce below a version of perturbation theory for a systematic
treatment.

Let us describe in general the effective Hamiltonian which acts on the restricted Hilbert space M called
the model space [10, 11]. We introduce a projection operator P to the model space M by

P =
∑
α∈M

|α〉〈α| (1.32)

where |α〉 denotes a state in M . From a state Ψi which is an eigenstate of H with eigenvalue Ei, we
make a projected wave function PΨi. We define the effective Hamiltonian Heff such that the same
eigenvalues are reproduced within the model space, i.e.,

HeffPΨi = EiPΨi. (1.33)

Since the dimension of M is less than that of the original Hilbert space, some PΨi are actually zero. The
effective Hamiltonian is useful only if the states of interest have nonzero PΨi. If Ψi has a substantial
weight in M , the projection can be performed accurately by lower-order perturbation theory. It should
be noted, however, that in strongly correlated systems one often has to work with a model space with
very small weight. This is typically the case when one deals with the Kondo effect.

The unperturbed Hamiltonian is defined as H0 = PHP + QHQ with Q = 1 − P . The perturbation
part is then given by V = H −H0 = PHQ + QHP . It is obvious that P and Q commute with H0. The
Schrödinger equation HΨi = EiΨi is written in the form,

(Ei − H0)QΨi = QV Ψi. (1.34)

In terms of the operator R(E) = (E − H0)−1 which is called the resolvent, we get

QΨi = R(Ei)QV Ψi. (1.35)

This form is convenient for iteration. Namely we obtain

Ψi = PΨi + QΨi =
∞∑

n=0

[R(Ei)QV ]nPΨi ≡ Ω(Ei)PΨi, (1.36)

where the wave operator Ω(E) is introduced in the last part. Thus Heff which satisfies eq.(1.33) is given
by

Heff (Ei) = PHΩ(Ei)P, (1.37)

where the rightmost P could equally be removed by the property P 2 = P . The notable feature here
is that Heff (Ei) depends on the eigenvalue to be derived. This kind of formalism with self-consistency
condition for Ei is called the Brillouin-Wigner perturbation theory. It is possible to eliminate the energy
dependence in Heff by a modification of the above expansion. The resultant formalism is called the
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Rayleigh-Schrödinger perturbation theory, which is more commonly used in quantum mechanics. We
explain the latter scheme in Appendix C in connection to the renormalization of the Kondo model. Up
to second order in V , there is no difference between the two kinds of perturbation theory.

In the case of the hydrogen lattice with a/aB ≫ 1, it is appropriate to define the model space M as
the singly occupied set of 1s Wannier orbitals. The perturbation part V consists of the hopping and the
two-body interactions. In the lowest order in V , we replace Ei by the unperturbed one Nϵa. Then we
get

Heff = H0 + PV (Nϵa − H0)−1QV P. (1.38)

Of the two competing exchanges, Jd comes from H0 and the kinetic exchange from the second term.
If one uses the atomic 1s orbital, U is calculated to be 17 eV. However, as one goes higher in V , the
parameters Md and U are renormalized by the presence of 2s and other orbitals. In actual solids, this
polarization effect reduces U drastically (to about half). It is therefore very difficult to obtain the
exchange parameter from first principles. It should be emphasized that the magnitude of the exchange
and other parameters in the effective Hamiltonian depends on the model space chosen. This feature is
often overlooked in the literature and causes confusion in interpretation of experimental data.

Another higher order effect of V is to produce many-spin exchange terms. Estimation of the magnitude
is even more difficult than the two-spin exchange. We only note here that in some cases the spin ordering
experimentally observed requires significant three-spin or four-spin interactions [12, 13].

The most important feature in the case (ii) is that the energy gap of the order of 0.75 Ryd survives
for any spin configuration, and that the system needs a finite threshold energy to conduct the electronic
current. Thus the system behaves as an insulator at absolute zero. However, spin excitations from
the ground state are gapless. In the case of magnetically ordered ground state the gapless excitation
is related to the Goldstone theorem on the spontaneous breakdown of the continuous symmetry [14].
We emphasize that this insulating state is different from the band insulator where there are an even
number of electrons per cell. In the latter case the energy gap is both for spin and charge excitations
as exemplified by solid He with 1s2 configuration. The band insulator is smoothly connected to weakly
interacting atoms as the lattice parameter increases in this case.

Let us summarize the two fundamental characters of electrons in the hydrogen lattice. In the case
where the kinetic energy is the most important quantity as in high densities, the ground state is a metal
and electrons form energy bands. In the opposite case where the Coulomb repulsion among electrons is
the most important one, the ground state is insulating and the electrons are localized. Except in one
dimension, the ground state has a certain kind of magnetic order.

The fundamental question to ask is what happens in the case of a ∼ aB. The question was raised by
Mott [8], and the effort to answer this question has opened remarkably rich outcomes in both experiment
and theory. We will explore the actual examples in this book. In closing this section we introduce the
simplest model that is still capable of describing both itinerant and localized features of electrons.
Namely in H2 given by eq.(1.28) we keep only the largest term in 〈ij|v|lm〉 that corresponds to the case
of i = j = l = m. Then H2 is replaced by

H2 → U
∑

i

(ni↑ni↓ − ni↑ − ni↓) ≡ HU − UNe. (1.39)

where U = 〈ii|v|ii〉 and niσ = a†
iσaiσ, and Ne is the total number of electrons which may not be equal to

N. The resultant model H1 + HU is called the Hubbard model [15, 16, 17]. Namely the Hubbard model
HHub is given by

HHub =
∑
iσ

ϵac†iσciσ +
∑

i̸=j,σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ (1.40)

We note that the fully polarized Hartree-Fock state becomes an eigenstate of the Hubbard model.
However, this ferromagnetic state costs more energy in H1 given by eq.(1.26) than the paramagnetic
and antiferromagnetic states. According to available exact solution in one dimension, the ferromagnetic
state is not actually the ground state [18].

In heavy-electron systems, the Hubbard model with a single energy band is actually too simplistic.
The minimum elements to be included are not only a conduction band but nearly localized electrons.
The simplest model with these two kinds of states is called the Anderson lattice, which will be discussed
in Chapter 3.
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1.3 Fundamentals of Spin Dynamics

1.3.1 Itinerant magnetic moments

In the case of a single conduction band, the magnetization M i at site i is given by

M i = −1
2
gµBc†iασαγciγ , (1.41)

where σ denotes the vector composed of the Pauli matrices, α and γ are spin components, and g is the
g-factor. The Fourier transform M(q) of M i is given by

M(q) = −1
2
gµB

∑
kαγ

c†
kα

σαγck + qγ
. (1.42)

If the spin-orbit interaction is strong in the band, one should interpret the spin indices α, γ as representing
a state in a Kramers doublet for each momentum. In this case the g-factor should also be replaced by a
tensor. We shall encounter an important example of this case in the superconductivity of heavy electrons
in Chapter 5.

The dynamical property of the magnetic moment is most conveniently characterized by the linear
response against external perturbation. The linear response theory provides the dynamical magnetic
susceptibility tensor µ2

Bχαγ(q, ω) in terms of the statistical average of the commutator

µ2
Bχαγ(q, ω) =

i

V

∫ ∞

0

dt exp(iωt)〈[Mα(q, t),Mγ(−q)]〉, (1.43)

where V is the volume of the system, and Mα(q, t) = exp(iHt)Mα(q) exp(−iHt) is the magnetization
in the direction α. Here we take the Heisenberg picture with Hamiltonian H. The statistical average
is taken with respect to the Boltzmann weight factor exp(−βH)/Z with Z being the partition function
Tr exp(−βH). We refer to Appendix A for brief review of linear response theory.

We begin with the simplest case of a free electron gas for which the dynamical magnetic susceptibility
can be obtained exactly. Note that

M+(q) = Mx(q) + iMy(q) = −µB

∑
k

c†
k↑ck+q↓, (1.44)

with g = 2, and that the time dependence is simply given by ckσ(t) = exp(−iϵkt)ckσ. Then we use the
commutation rule

[c†1c2, c
†
3c4] = δ23c

†
1c4 − δ14c

†
3c2 (1.45)

where the obvious set of quantum numbers have been abbreviated symbolically. The magnetic suscep-
tibility is then given by

µ2
Bχ0(q, ω) =

2µ2
B

V

∑
k

f(ϵk+q) − f(ϵk)

ω − ϵk+q + ϵk + iδ
, (1.46)

which in this case is a scalar. Here f(ϵ) = [exp(βϵ) + 1]−1 is the Fermi distribution function with the
chemical potential being the origin of energy.

1.3.2 Localized magnetic moments

Heavy electrons are observed mainly in rare-earth and actinide compounds. These compounds have
incomplete f shells which have finite magnetic moments. We summarize elementary facts about magnetic
moments associated with f shells [19].

Let us consider a case of a free trivalent Ce ion with the electron configuration (4f)1 on top of Xe
configuration. The spin-orbit interaction splits the 14-fold degenerate level with the orbital angular
momentum L = 3 and the spin S = 1/2 into two levels with J = L + S = 7/2 and J = L − S = 5/2
where J is the total angular momentum. The 6-fold degenerate level with J = 5/2 lies lower than the
J = 7/2 level by about 0.3 eV.
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The magnitude of the magnetic moment M associated with the J = 5/2 level is given by M = −gJµBJ
where µB is the Bohr magneton and

gJ =
3
2

+
S(S + 1) − L(L + 1)

2J(J + 1)
(1.47)

is the Landé g-factor.
In the case of a free rare-earth ion with more f electrons, the energy levels are described by the

LS-coupling (or Russel-Saunders) scheme. Here one first neglects the spin-orbit interaction and takes a
multiplet with definite angular momenta S and L. The effect of spin-orbit interaction is approximated
by the term HLS = λL ·S where λ gives the strength of the interaction. According to an empirical rule
called the Hund rule, the ground state of the atom takes the largest possible S and the largest L allowed
for the S. The effective Hamiltonian HLS should work if the magnitude of λ is much smaller than the
splitting of multiplets with different L and S. The sign of λ is positive for a less-than-half filled shell,
i.e. less than seven 4f electrons, and favors antiparallel L and S. On the other hand, λ is negative
for a more-than-half filled shell. Thus in the case of trivalent Yb with 13 electrons in the 4f shell, the
spin-orbit interaction favors parallel L and S, leading to the ground level with J = 7/2. The spin-orbit
splitting is larger than the Ce case, and amounts to 0.8 eV.

The actinides have even larger spin-orbit interaction, and the LS-coupling scheme for describing levels
within a multiplet is not so accurate as in rare-earths. However at least for light actinides like U, the
scheme is still practical for discussion of energy levels.

A rare-earth or an actinide ion in a crystal feels the potential of the environment. The relevant point
group symmetry is lower than the spherical one. As a result the degeneracy 2J + 1 for a spin-orbit level
with the angular momentum J is split into sublevels. This splitting as well as associated physical effects
are called crystalline-electric-field (CEF) effects. In the case of Ce3+ in a cubic CEF, for example, the
J = 5/2 level is split into a doublet called Γ7 and a quartet called Γ8. The CEF eigenstates are given
for the Γ7 by

ψ7,± =

√
1
6
| ± 5

2
〉 −

√
5
6
| ∓ 3

2
〉, (1.48)

in terms of the eigenstates of Jz. The eigenstates for Γ8 are given by

ψ8A,± =

√
5
6
| ± 5

2
〉 +

√
1
6
| ∓ 3

2
〉, ψ8B,± = | ± 1

2
〉 (1.49)

The magnetic moment operator Mz has nonvanishing matrix elements only within a CEF level. However
the Mx and My components have finite elements both within the CEF levels and between different levels.

In order to describe the localized levels and transitions between them, it is convenient to introduce an
operator Xµν ≡ |µ〉〈ν| which describes a transition from a localized multi-electron state |ν〉 to another
state |µ〉 . In the case of ν = µ, Xµµ ≡ |µ〉〈µ| becomes a projection operator onto |µ〉. The set of
localized levels {Eµ} with inclusion of the spin-orbit interaction and CEF effects is summarized by the
Hamiltonian Hl as

Hl =
∑

µ

EµXµµ. (1.50)

The magnetic moment in the z-direction is expressed as

Mz =
∑
µν

〈µ|Mz|ν〉Xµν , (1.51)

The Lande g-factor is included in the matrix element 〈µ|Mz|ν〉.
It is sometimes convenient to associate a pseudo spin 1/2 with the doublet CEF. We derive the effective

g-factor taking as an example the tetragonal CEF. The basis functions of the lowest doublet |±〉 are
given by

|±〉 = a| ± 5/2〉 − b| ∓ 3/2〉, (1.52)

where a, b are real parameters with the constraint a2 + b2 = 1. We calculate a matrix element

1
µB

〈+|Mz|+〉 =
(

5
2
a2 − 3

2
b2

)
gJ ≡ −1

2
gz, (1.53)
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where we introduce the effective g-factor gz along the z-direction. Similarly we introduce the perpendic-
ular component g⊥ = gx = gy by

〈+|Mx + iMy|−〉 = −g⊥µB . (1.54)

Then a simple calculation gives

gz = −6
7
(1 + 4 cos 2θ), g⊥ =

6
√

5
7

sin 2θ, (1.55)

with a = cos θ, and we have put gJ = −6/7. In the special case of cubic symmetry, we get gz = g⊥ = 10/7
with cos θ = 1/

√
6. Figure 1.5 shows each component as functions of θ. It should be noted that the

effective g-factor can be very anisotropic depending on the CEF; it is Ising-like with θ = 0, π and XY-like
with tan2 θ = 5/3. In reality θ is determined as a function of the CEF parameters as explained in ref.[19]
for example. The implication of the anisotropic g factor for superconductivity seems to be an important
problem, but has not yet been discussed in the literature.

0 p / 2 p
q

g-f
act

or

- 4

- 2

0

2

g z

g
⊥

Figure 1.5: The effective g-tensor as a function of the parameter θ. See text for details.

The origin of the CEF is not only the Coulomb potential of the environment, but also includes the
overlap of wave function of the ligands. The latter is called hybridization. If the perturbation energy
due to hybridization is smaller than the splitting of spin-orbit split levels, one can still keep the localized
picture of f electrons. In the opposite limit, 4f electrons can be better treated as itinerant electrons.
The degree of hybridization depends on each material, but the general tendency is that 4f electrons are
more strongly localized than 5f electrons. In particular, U ions often have hybridization strength for
which neither the localized picture nor the itinerant picture applies well.

In a hypothetical case of localized electrons with no interaction with the environment, one can obtain
the dynamical susceptibility exactly. With use of the X-operators the linear response formula can be
evaluated directly. There is no dependence on the wave number. The result for the susceptibility χzz(ω)
at a site of localized electrons is

µ2
Bχzz(ω) =

∑
µν

|〈µ|Mz|ν〉|2 〈Xνν〉 − 〈Xµµ〉
ω − Eν + Eµ + iδ

. (1.56)

The factor δ is required to make the integral converge and is related to causality.
If the external field is static the susceptibility is obtained from the formula

µ2
Bχαγ =

∫ β

0

dλ〈eλHMγe−λHMα〉 = µ2
Bχγα, (1.57)
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which corresponds to the isothermal susceptibility. On the other hand, the static limit of eq.(1.56)
corresponds to the adiabatic susceptibility. In the system without hybridization the result is given by

χzz = χzz(ω → 0) +
1

µBT

∑
µν

|〈µ|Mz|ν〉|2〈Xµµ〉, (1.58)

where the sum in the second term is only over degenerate states µ, ν which do not contribute to the first
term. The second term gives the Curie law while the first term is called the van Vleck term. Thus if
the ground state of the system is degenerate the adiabatic and isothermal static susceptibilities differ by
the second term. In reality, localized electrons interact with conduction electrons by hybridization, or
with themselves at different sites by higher order interactions. These effects remove the degeneracy of
the ground state. Then the time average becomes equivalent to the statistical average which is referred
to as ergodicity. Accordingly the adiabatic and isothermal susceptibilities become the same.

1.3.3 Random phase approximation

In realistic systems, the electrons are neither free nor strictly localized. The difficulty to take reliable
account of the interaction effects stimulated various theories for the dynamical response. Let us explain
the simplest account of the interaction effect. To do this we write the interaction HU given by eq.(1.39)
as

HU =
U

4

∑
i

(n2
i − m2

i − 4ni) (1.59)

where ni = ni↑ + ni↓ and mi = ni↑ − ni↓. We focus attention on the term −m2
i , and decompose it as

m2
i = (〈mi〉 + δmi)2 = 〈mi〉2 + 2〈mi〉δmi + (δmi)2, (1.60)

where δmi = mi − 〈mi〉 and 〈mi〉 means a certain average to be determined self-consistently. The
approximation we make is to neglect the last term in eq.(1.60). This is a kind of mean field approximation,
and is often called the random phase approximation (RPA). This is equivalent to replacing HU in the
Heisenberg picture by

Heff = −
∑

i

φi(t)mi(t) = −
∑
q

∫ ∞

−∞
dω exp(iq · Ri)φ(q, ω)m(−q, ω), (1.61)

with φi(t) = U〈mi(t)〉/2 being the dynamic effective field, and

m(−q, ω) =
∑

i

∫ ∞

−∞
dt exp(−iq · Ri + iωt)mi(t), (1.62)

φ(q, ω) =
U

2
〈m(q, ω)〉. (1.63)

In the presence of a space- and time-dependent external magnetic field H exp(iq ·Ri − iωt) along the
z direction, the linear response of the system with Heff is given by

〈m(q, ω)〉 ≡ χ(q, ω)h = χ0(q, ω)[h + φ(q, ω)], (1.64)

where h = µBH and χ0(q, ω) is given by eq.(1.46). By substituting eq.(1.63) for φ(q, ω) the dynamical
spin susceptibility χ(q, ω) of the system is derived as

χ(q, ω)−1 = χ0(q, ω)−1 − U

2
. (1.65)

We make two remarks about eq.(1.65). First, in the static and homogeneous limit we obtain from
eq.(1.46)

χ0(0, 0) =
2
V

∑
k

δ(ϵk) ≡ ρ(µ). (1.66)

The RPA is a good approximation if α ≡ ρ(µ)U/2 ≪ 1. As α increases toward unity, the contribution of
fluctuations becomes important. Thus the divergence of χ(0, 0) at α = 1 should not be taken literally. In
fact one of the most important problems in heavy electrons is to explain the stability of the paramagnetic
state although the opposite limit α ≫ 1 is realized. Secondly, since the system has rotational invariance
with respect to the spin direction, χ(q, ω) is a scalar, i.e., it is independent of the direction of the
magnetic field.
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1.3.4 Fermi liquid theory

If the state near absolute zero of temperature T is a paramagnetic metal, the Fermi liquid theory
of Landau provides a very successful description. Let us briefly review the basic idea of the Fermi-
liquid theory [20, 21]. The starting point is the assumption that the low-lying excitations of interacting
fermions are in one-to-one correspondence with those in a non-interacting counterpart. The assumption is
equivalent to adiabatic continuity when turning on the interaction. Provided the perturbation expansion
with respect to the interaction converges, the continuity should be satisfied no matter how strong the
interaction is. Then any excited state can be characterized by the distribution {npσ} of quasi-particles.
The quasi-particle is a concept to characterize the one-to-one correspondence, and reduces to the original
particle in the noninteracting limit. We consider a change of the distribution function of a quasi-particle
from that of the ground state. For momentum p, spin sz(= σ/2 = ±1/2) the change is written as δnpσ .
Then the excitation energy δE is expanded as

δE =
∑
pσ

ϵpδnpσ +
1
2

∑
pσ

∑
p′σ′

f(pσ, p′σ′)δnpσδnp′σ′ + O(δn3
pσ), (1.67)

where ϵp is the quasi-particle energy measured from the Fermi level, and f(pσ, p′σ′) describes the
interaction between quasi-particles. Since ϵp is a small quantity, the first and second terms in the right
hand side are of the same order of magnitude. It is possible to neglect terms of higher order with respect
to δnpσ .

Let us assume spherical symmetry in the system. Then we can regard the absolute value of the
momenta p, p′ of quasi-particles equal to the Fermi momentum pF . In terms of the angle θpp′ between
p, p′ we decompose

ρ∗(µ)f(pσ, p′σ′) =
∞∑

l=0

(Fl + σσ′Zl)Pl(cos θpp′), (1.68)

where ρ∗(µ) is the density of states of quasi-particles at the Fermi level. It is given by

ρ∗(µ) =
1
V

∑
pσ

δ(ϵp) =
m∗pF

π2
(1.69)

with m∗ being the effective mass of a quasi-particle. The dimensionless quantities Fl, Zl are called
Landau parameters. A similar decomposition for δnpσ is given in terms of spherical harmonics by

δnpσ =
∑
ℓm

δnℓmσYℓm(p̂), (1.70)

where p̂ denotes the solid angle of p. Then the second term of eq.(1.67) can be written as

1
2ρ∗(µ)

∑
ℓm

∑
σσ′

(Fl + σσ′Zl)δnℓmσδnℓmσ′ (1.71)

The observables at low excitation energies are described quantitatively in terms of a small number
of Landau parameters. Thus by comparison with measurement these parameters can be determined
experimentally. This is the most advantageous aspect of the Fermi-liquid theory. The interaction between
quasi-particles plays no role for the specific heat C at low T . Namely we obtain

C =
π2

3
ρ∗(µ)T, (1.72)

which takes the same form as the free electron gas. The interaction effect appears only in the effective
mass.

Next we derive the static spin susceptibility χ. If the Landau parameters are all zero, the susceptibility
would be given by χ∗

0 = ρ∗(µ). This is regarded as the static and small q limit of the free quasi-particle
susceptibility analogous to eq.(1.46). As the next simplest case we assume the presence of homogeneous
polarization density M = V −1

∑
p(np↑ − np↓). Then eq.(1.67) is rewritten as

δE

V
=

1
2χ∗

0

M2 +
1

2ρ∗(µ)
Z0M

2 ≡ 1
2χ

M2. (1.73)
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Taking the second derivative of eq.(1.73) with respect to M we obtain

χ = χ∗
0/(1 + Z0), (1.74)

where we have used the relation χ∗
0 = ρ∗(µ).

One can regard eq.(1.67) as an effective Hamiltonian for the quasi-particles. Then it should be possible
to derive the dynamical properties of the system as well. This is done by Landau in the form of the
transport equation. We here follow an alternative approach which is easier to compare with perturbation
theory. Let us consider the situation where an external magnetic field H along the z-axis has a single
Fourier component q. Namely we assume

Hex(t) = −m(−q, t)h exp(−iωt) (1.75)

with h = µBH. The dynamical susceptibility of non-interacting quasi-particles is written as χ∗
0(q, ω)

and can be calculated as in eq.(1.46). From the static result we anticipate that the dynamical response
is given by

〈m(q, ω)〉 = χ∗
0(q, ω)[h + heff (q, ω)] (1.76)

where heff (q, ω) is the self-consistent field. If we neglect Landau parameters other than Z0, we obtain

heff (q, ω) = −Z0χ
∗
0(q, ω)〈m(q, ω)〉. (1.77)

Thus the full susceptibility χ(q, ω) = 〈m(q, ω)〉/h is given by

χ(q, ω)−1 = χ∗
0(q, ω)−1 + Z0/ρ∗(µ). (1.78)

Since there are many nonzero Landau parameters in general, eq.(1.78) constitutes an approximation
which may be called the quasi-particle RPA [22]. In the original RPA for bare particles in the Hubbard
model, χ0(q, ω) includes the bare spectrum and Z0/ρ∗(µ) is replaced by −U/2. We emphasize that
eq.(1.78) is meaningful only for excitations with small ω and q.

In concluding this subsection we note the complication in real materials. In the presence of multiple
energy bands, the magnetic susceptibility consists of both the spin susceptibility as discussed above and
the inter-band contribution which corresponds to the van Vleck term in the local moment case. It is not
at all trivial to separate two contributions from the measured susceptibility in heavy electrons. In fact
the inter-band term is often large and requires careful analysis in NMR and neutron scattering [23].

1.3.5 Parametrization of the dynamical susceptibility

For practical purposes it is useful to parametrize the dynamical susceptibility approximately. Assuming
q/kF ≪ 1 and ω/vF q < 1 with vF being the Fermi velocity, we obtain from eq.(1.46)

χ∗
0(q, ω) = ρ∗(µ)[1 − b2q2 + i

πω

2vF q
], (1.79)

where b is a constant of O(k−1
F ). In the case of the parabolic spectrum we have b−2 = 12k2

F . To
extrapolate to larger q and ω we modify eq.(1.79) as follows:

χ∗
0(q, ω) = ρ∗(µ)[1 + b2q2 − i

πω

2vF q
]−1. (1.80)

By this approximation the original cut singularity in χ∗
0(q, ω) as a function of ω is replaced by the pole

singularity. Then using eq.(1.78) we obtain

χ(q, ω) =
ρ∗(µ)

1 + Z0 + b2q2 − iπω/(2vF q)
. (1.81)

The imaginary part can be written in the form:

Imχ(q, ω) =
χ

1 + ξ2q2

ωΓq

ω2 + Γq
, (1.82)

where ξ2 = b2/(1 + Z0) and
Γq = 2vF (1 + Z0)q(1 + ξ2q2). (1.83)
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This “double Lorentzian” form is often used for fitting experimental results of neutron scattering. The
correlation length ξ of magnetic fluctuation becomes divergent at the ferromagnetic instability Z0 = −1.
The relaxation rate Γq is proportional to q for small wave number which is a feature specific to itinerant
magnetism. The characteristic energy of the ferromagnetic spin fluctuation is given by (1 + Z0)vF kF ,
and becomes much smaller than the Fermi energy near the ferromagnetic instability 1 + Z0 = 0.

Let us now consider the case where the antiferromagnetic (AF) correlation is dominant. The relevant
wave number is near the ordering vector Q. The relaxation rate Γ(q) in the AF case remains finite at
q = Q. The difference from eq.(1.83) comes from the absence of conservation law for the staggered mag-
netization. Let us assume that the dissipation in the system occurs dominantly through local processes.
Then the dynamical susceptibility can be parametrized in the form

χ(q, ω) =
χL(ω)

1 − J(q)χL(ω)
, (1.84)

where J(q) is the Fourier transform of the intersite exchange interaction. Note that the local susceptibil-
ity χL(ω) describes the dissipation process. Antiferromagnetic order takes place when the denominator
of eq.(1.84) becomes zero at q = Q. We postulate the Lorentzian form

χL(ω) =
χLΓ

Γ − iω
, (1.85)

where Γ is the local relaxation rate. Then we may write eq.(1.84) as

χ(q, ω) =
χ(q)Γ(q)
Γ(q) − iω

, (1.86)

where Γ(q) = [1 − J(q)χL]Γ and χ(q) = χ(q, 0). From this equation we learn that the q-dependent
relaxation rate Γ(q) becomes small near the AF instability. In fact we have the relation [24]

χ(q)Γ(q) = χLΓ. (1.87)

In order to study the q dependence of the relaxation we expand J(q) around q = Q as

J(Q + q) = J(Q) − Aq2 + . . . , (1.88)

where we assume isotropic q-dependence of J(Q + q) and A = −J ′′(Q)/2. Then we get

χ(Q + q) =
χ(Q)

1 + q2ξ2
, (1.89)

Γ(Q + q) = Γ(Q)(1 + q2ξ2), (1.90)

where ξ2 = Aχ(Q). Note that ξ represents the correlation length of the AF fluctuation. In the itinerant
AF system one can use the same parametrization as given by eqs.(1.86), (1.89) and (1.90) even though
one does not rely on the RKKY interaction and the local nature of relaxation.

As we have seen the relaxation of magnetic moments depends strongly whether or not magnetization is
a conserved quantity at the relevant wave number. If it is conserved the magnetic relaxation is suppressed
for small wave numbers. We now turn to another phenomenological description which is useful in the
presence of disorder in itinerant systems or in local-moment systems. We follow Kadanoff and Martin
in deriving χ(q, ω) in the hydrodynamic regime [25]. One starts with the continuity equation for the
magnetization density M(r, t) along the z-direction:

∂

∂t
M(r, t) + ∇ · j(r, t) = 0 (1.91)

where j(r, t) is the magnetization current. It is understood that direction of the magnetization is always
along the z-axis, and that M(r, t) and j(r, t) are c-numbers. In terms of a parameter D called the spin
diffusion coefficient, the current is given by

j(r, t) = −D∇M(r, t). (1.92)
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Substituting this into the continuity equation, we get a diffusion equation for the magnetization,

∂

∂t
M(r, t) = D∇2M(r, t). (1.93)

We note that this equation is valid only when the magnetic field is absent. In order to make connection
with the linear response we take the Laplace transform of eq.(1.93). Then we obtain

M(q, z) =
M(q, t = 0)
−iz + Dq2

, (1.94)

where

M(q, z) =
∫ ∞

0

dtM(q, t) exp(izt). (1.95)

Here the complex variable z has a positive imaginary part. Equation(1.94) gives the Laplace transform
of the relaxation function, since M(q, t = 0) is determined by the static magnetic field present up to
t = 0. Then using the relation to the retarded Green function as given by eq.(B.10) in Appendix B we
obtain the dynamical susceptibility as

χ(q, ω) =
χ(q, 0)Dq2

−iω + Dq2
. (1.96)

The form (1.96) is often used in analyzing experimental results at small q for systems with conserved
local moments. In the case of pure itinerant ferromagnetism, the diffusion equation eq.(1.93) does not
hold since there is no hydrodynamic regime.

1.3.6 Mode-coupling picture of spin fluctuations

To account for the spin fluctuations going one step beyond the RPA, one can use the Hartree approxi-
mation for the coupling of spin fluctuations [26, 27, 28]. In this section we critically survey fundamental
ideas of this mode-coupling theory. For simplicity we take the Hubbard model with the paramagnetic
ground state, and consider the Helmholtz free energy F per site under the condition that homogeneous
spin polarization m = 〈ni↑ − ni↓〉 is present. The magnetic susceptibility χ in units of µ2

B , which is the
homogeneous and static limit of the dynamical susceptibility χ(q, ω), is given by the thermodynamic
derivative

χ−1 =
∂2F

∂m2
. (1.97)

The task is to account for the interaction effect in F . We rewrite HU as

HU = −U

2

∑
i

{S+
i , S−

i } +
U

2
N (1.98)

in terms of spin flip operators at each site i. The free energy of the system with the coupling strength
gU (0 < g < 1) is given by

F (g) = −T lnTr exp[−(βH1 + gHU )], (1.99)

where H1 is given by eq.(1.26) and the trace is over all states with fixed number of particles. Then we
obtain

g
∂

∂g
F (g) = 〈HgU 〉g. (1.100)

where the average is taken for the system with the interaction gU . In the non-interacting state the
average of the anticommutator can be derived easily as

〈{S+
i , S−

i }〉0 = n +
1
2
(n2 − m2). (1.101)

Thus we obtain
F = F0 +

1
2χ0

m2 − 1
4
Um2 + ∆F, (1.102)
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where F0 is the free energy of the non-interacting system with m = 0, and ∆F accounts for the correlation
effect. The latter is given by

∆F =
∫ 1

0

dg[〈{S+
i , S−

i }〉g − 〈{S+
i , S−

i }〉0]. (1.103)

Neglect of ∆F in eq.(1.97) leads to the Hartree-Fock susceptibility, which corresponds to the static and
homogeneous limit of the dynamical susceptibility in the RPA. In computing ∆F we notice that the
average in eq.(1.103) is given by

〈{S+
i , S−

i }〉g =
∫ ∞

−∞

dω

2π
coth(

1
2
βω)Imχ⊥

m,gU (ω) = T
∑

n

χ⊥
m,gU (iνn) (1.104)

where χ⊥
m,gU (ω) = −〈[S+

i , S−
i ]〉g(ω) is the local transverse susceptibility in the presence of magnetization

m. This is an example of the fluctuation-dissipation theorem explained in Appendix B. In the second
equality iνn denotes the Matsubara frequency (see Appendix B).

In the RPA, the dynamical susceptibility is given by

χ⊥
m,gU (q, ω)−1 = χ⊥

m,0(q, ω)−1 − gU. (1.105)

Then one can easily derive the correlation part in the RPA as

∆FRPA = T
∑

n

∑
q

{
ln[1 − U

2
χ⊥

m,0(q, iνn)] +
U

2
χ⊥

m,0(q, iνn)
}

. (1.106)

The RPA theory has an obvious inconsistency [27] : The static and homogeneous limit of eq.(1.105)
with g = 1 does not agree with the one derived with use of eq.(1.106) and eq.(1.97). This discrepancy
becomes serious if one wants to calculate the Curie temperature Tc by the condition χ−1 = 0, since the
RPA susceptibility diverges at THF

c which is different from Tc to be calculated from eq.(1.97).
The simplest way to remedy this drawback is to introduce a parameter λ by

χ−1 = (1 + λ)χ−1
0 − 1

2
U. (1.107)

The correlation effect represented by λ is related to ∆F as

λχ−1
0 =

∂2∆F

∂m2

∣∣∣∣
m=0

. (1.108)

One then modifies eq.(1.106) in the following manner [27]

∆FSCR = T
∑

n

∑
q

{
ln[1 + λ − U

2
χ⊥

m,0(q, iνn)] +
U

2
χ⊥

m,0(q, iνn)
}

. (1.109)

Provided that takes maximum at q = 0 and m = 0, a singularity in ∆FSCR occurs at Tc as the
ferromagnetic instability. This instability at Tc is consistent with the divergence of χ given by eq.(1.107).
Thus the inconsistency of the RPA has been removed.

Equation (1.109) is of central importance in the so-called self-consistent renormalization (SCR) theory
of Moriya and Kawabata [27]. Since χ⊥

m,0(q, iνn) can be derived explicitly for a given spectrum of
electrons, it is possible to set up a self-consistency equation for λ at each temperature. One obtains
λ(T ) − λ(0) ∝ T 4/3 since the local susceptibility with m = 0 in eq.(1.104) behaves as ω1/3 for small ω.
This power-law behavior will be derived shortly. The second derivative of χ⊥

m,0(q, iνn) with respect to
m does not change this leading behavior at m = 0. We emphasize that the T -dependence of λ(T ) is
controlled by spectrum of the ferromagnetic spin fluctuation and is independent of details of the band
structure. In the case of antiferromagnetic metals, the different q-dependence of spin fluctuations leads
to Imχ(ω) ∝ ω1/2 and λ(T ) − λ(0) ∝ T 3/2.

The temperature dependence of λ leads to an approximate Curie-Weiss-like behavior of the suscep-
tibility, which is the most remarkable effect of the mode coupling. The SCR theory has been widely
used in explaining temperature dependence of physical quantities in transition metals and some of their
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γ

Figure 1.6: The dominant fluctuation contribution to the susceptibility.

compounds. The temperature dependence deviate from the RPA theory significantly near the magnetic
transition. The most appealing feature of the SCR theory is that the mode-coupling effect is taken into
account in a simple and practical manner. However, eq.(1.109) cannot be justified microscopically near
the magnetic transition. Since the SCR theory relies on χ⊥

m,0(q, ω) as the basic ingredient like the RPA,
the parameter λ should be small to justify the SCR as a weak-coupling theory. However λ becomes
actually of the order of unity by the self-consistency requirement. This is simply because ∆FSCR does
not vanish even with λ = 0, and therefore λ ≪ 1 cannot be a self-consistent solution of eq.(1.108) near
the magnetic instability. By this reason one should regard the SCR theory as a semi-phenomenological
scheme to deal with the mode coupling among spin fluctuations, rather than a microscopic theory for
the Hubbard model. The original Moriya-Kawabata theory as presented above was later modified in a
few different ways. We refer to Moriya’s book [29] for comprehensive account of the SCR theory.

An alternative approach to take account of the mode-coupling effect has been proposed by Dzyaloshin-
skii and Kondratenko [28] by the use of the Fermi liquid theory. Let us assume again the paramagnetic
Fermi liquid ground state. We consider the leading finite temperature correction to the dynamical sus-
ceptibility χ(q, ω;T ) at low temperature T . According to the Matsubara Green function formalism the
leading correction is obtained by the following procedure: From a Feynman diagram for χ(q, iω;T ) we
pick up a part Γ(iν;T ) with low frequency ν flowing from and to the rest of the diagram. Then we
replace the frequency summation in this part by(

T
∑

ν

−
∫ ∞

−∞

dω

2π

)
Γ(iν;T ), (1.110)

and integration is performed over all the remaining frequencies.
In the case of a weak ferromagnet, the dominant contribution to Γ(iν;T ) comes from a spin fluctuation

with small wave number and frequency. Particle-hole excitations have the energy scale of the Fermi
energy and can safely be neglected. Thus the relevant diagram is represented by Fig.1.6 and constitutes
the self-energy like correction to the susceptibility. Namely we obtain

χ(0, 0; 0)−1 − χ(0, 0;T )−1 = −γ

∫ ∞

0

dω

2π

∫
dq

(2π)3
1

exp(ω/T ) − 1
Imχ(q, ω;T ) ≡ −γβ(T ), (1.111)

where γ is a parameter for the mode-coupling, and the Bose distribution function emerges from the
analytic continuation of eq.(1.110). One can regard γ as a constant since dependence on wave number,
frequency, and temperature is on the much larger scale of one-particle excitations.

The temperature-dependent correction given by eq.(1.111) corresponds to λ(T ) − λ(0) in the SCR
theory. The magnitude of γ cannot be evaluated by perturbation theory since higher order terms are
equally important in general. In the nearly ferromagnetic ground state, 1 + Z0 ≡ α is much smaller
than unity. Then the characteristic temperature TSF = αvF kF of spin fluctuations is much lower than
the Fermi temperature TF = vF kF /2. In doing the integration in eq.(1.111) for the temperature range
TSF ≪ T ≪ TF , one may use the parametrized form eq.(1.81) for χ(q, ω;T ). This is firstly because
only the small q/kF becomes important, and secondly the detailed analytic structure with respect to ω
is not important for small TSF /T . We scale the integration variables as q = ω1/3q̄, and then ω = T ω̄.
Integrations with respect to q̄ and ω̄ in eq.(1.111) give rise to the factor

β(T ) ∼ T 4/3. (1.112)
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With the nearly ferromagnetic ground state the magnetic susceptibility follows χ(T ) ∼ T−4/3. Thus the
same temperature dependence as that of the SCR theory [27] has been obtained. This agreement is not
accidental as is clear from the above derivation.

1.4 Nuclear Magnetic Resonance (NMR)

For understanding specific properties of heavy-electron systems, it is important to investigate and de-
scribe low energy excitations. In this context, both nuclear magnetic resonance (NMR) and neutron
scattering experiments play central roles in obtaining information about the dynamical response of
heavy-electron systems. Whereas the NMR probes the local environment of one particular nucleus and,
therefore, a wave-vector average of the dynamical response function with a small energy transfer com-
parable to the nuclear Zeeman energy (10−6 ∼ 10−8 meV), neutron scattering experiments can scan
wider energies and wave vectors corresponding to the whole Brillouin zone. In real situations the energy
transfer is usually limited below about 100 meV with use of thermal neutrons. Thus, both experiments
are complementary. The advantage of NMR is that it can extract the lowest energy excitation and
detect a magnetic instability with a tiny moment if it appears. Furthermore in the superconducting
state, NMR can provide a detailed structure of response function reliably. In this section, we begin with
the description of experimental aspects of NMR. For more detailed descriptions on NMR, we refer to
standard textbooks [30].

1.4.1 Phenomenology

A nucleus with spin I has a magnetic moment µn = γnI where γn is the nuclear gyromagnetic ratio. If
an isolated nucleus is placed in external magnetic field H0, the nuclear spin levels are split into 2I + 1
levels with an equal energy separation:

∆E = γnH0. (1.113)

According to the quantum-mechanical selection rule, the magnetic dipole transitions are induced only
between adjacent levels. Thus the nuclear spin system undergoes resonance absorption if the perturbing
oscillatory magnetic field H1 is applied perpendicularly to H0 with the condition ωn = γnH0. Actually
a nucleus in a nonmagnetic solid experiences a magnetic field which is different from the external field;
the correction ∆H contains contributions from dipolar fields of other nuclei, atomic diamagnetism and
the chemical shift. The correction is proportional to the induced electronic moment, and gives rise to
frequency shift and linewidth of NMR absorption spectrum. On the other hand, in a magnetically ordered
solid a nuclear spin experiences a dominant internal magnetic field associated with the spontaneous
magnetization of the electrons.

Let H0 be applied along the z axis, and M(t) be the nuclear magnetization averaged over the sample
at time t. In most cases the z-component Mz(t) will recover to the equilibrium value M0 exponentially.
The equation of motion for M(t) is then described by

dMz(t)
dt

= γn(M(t) × H)z +
1
T1

(M0 − Mz(t)), (1.114)

where T1 is the nuclear spin-lattice relaxation time and characterizes the rate at which energy is trans-
ferred from the nuclear spin system to the electron spin system. In heavy-electron systems, the spin
fluctuations resulting from exchange couplings among localized electron spins and/or with conduction
electron spins are responsible for the nuclear-spin lattice relaxation process. The magnetic field H is in
general different from H0 because of polarization of the medium.

In addition to T1, there is another relaxation time T2 which is related to the component M⊥(t) of
the magnetization perpendicular to the external field. The transverse magnetization is associated with
forced precession of the nuclear moment caused by the perturbing oscillation field H1. The equation of
motion for M⊥(t) is described by

dM⊥(t)
dt

= γn(M(t) × H) − M⊥(t)
T ∗

2

. (1.115)

Note that M⊥ is zero in thermal equilibrium. The characteristic time T ∗
2 does not directly reflect the

relaxation of the nuclear spin since possible inhomogeneity of the external field over the sample and/or
a static distribution of hyperfine fields at nuclear sites in the magnetic substance contribute to T ∗

2 .
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Figure 1.7: Illustration of the spin-echo NMR method.

In order to determine the intrinsic transverse relaxation time T2, one typically uses the spin-echo
method which is illustrated in Figure 1.7. The experiment goes as follows: Under the external field H0

along the z-axis, one applies an alternating field H1 with the resonance frequency ωn for a short time
δt = π/(2γnH1) (≪ T1) along the x-axis. This pulse causes M to rotate toward the y-axis by the angle
π/2, and hence is called a π/2-pulse. After the pulse is turned off, each nuclear spin contributing to M⊥(t)
begins to precess in the x-y plane. Because of the nuclear spin-spin interaction and the inhomogeneous
field, the precession frequency of each spin is different. Then the free induction signal, which comes from
the sum total of M⊥(t) from all portions of the sample, decays exponentially with a time constant T ∗

2 .
Waiting for a time τ (> T ∗

2 ) after the first π/2-pulse, one applies the second pulse for a time duration
δt′ = π/(γnH1), which generates rotation of each nuclear spin by the angle π around the x-axis. The
nuclear spins, which are pointing toward various directions in the x-y plane under the inhomogeneous
field, resume precession and finally refocus along the −y-direction after a time 2τ from the first π/2-
pulse. This refocusing results in the recovery of M⊥(t), which is probed as a peak in the free induction
signal like an echo. Hence the phenomenon is called the spin-echo.

The amplitude Ms(2τ) of the spin-echo usually decays exponentially as a function of 2τ as

Ms(2τ) = M⊥(0) exp
(
−2τ

T2

)
. (1.116)

The refocusing occurs only when the spins precessing under the inhomogeneous field keep the memory of
their phase. Then the condition τ ≪ T1, T2 is required in the spin-echo. In the case of T2 ≪ T1, decay of
the spin-echo is caused by the nuclear spin-spin interaction without any influence of the inhomogeneous
field distribution. Hence T2 provides information about intrinsic properties of the system. We will
discuss T1 and T2 in greater detail later for nuclei embedded in a magnetic solid.

1.4.2 Magnetic hyperfine interaction

Most NMR experiments in heavy-electron systems have been carried out for nuclei of non-lanthanide
constituents. As an exception, Yb NMR has been observed in the valence fluctuating compounds YbAl2
and YbAl3 [31]. In these materials the average valency of Yb is between 2+ and 3+ and the valency
fluctuates quantum mechanically. One can discuss directly the magnetic relaxation rate of f electrons
which is related to the linewidth of quasi-elastic neutron scattering intensity. This discussion of course
requires a reliable knowledge of the hyperfine field. On the other hand, the hyperfine interaction be-
tween non-lanthanide nuclei and f electrons is caused by mixing between f electrons and conduction
electrons which in turn interact with the nuclei. This transferred hyperfine interaction dominates the
magnetic hyperfine interaction between non-lanthanide nuclei and f electrons in most of heavy-electron
compounds. The interaction is mediated by the Fermi contact interaction, the spin-dipolar, and the
orbital hyperfine interactions with nuclei at non-Lanthanide sites. The Fermi contact interaction acts
only for s electrons and the latter two act only for non-s electrons as explained below.

Let us first discuss the Fermi contact interaction between a nucleus and an electron in an s-orbital.
Provided the magnetization density Mn = γnI/vn of the nucleus is uniform inside the nuclear volume
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vn, the magnetic field B produced by Mn is given by B = (8π/3)Mn. On the other hand the electronic
magnetization Me at the nucleus position is given by Me = −gµBs|φs(0)|2. Here |φs(0)|2 is the
probability density of the electron at the nucleus position, and s is the spin operator of the s electron.
The interaction between Me and B is described by the Hamiltonian Hc = −B ·Mevn which is rewritten
as follows:

Hc =
8π

3
γngµB |φs(0)|2I · s. (1.117)

We emphasize that this Fermi contact interaction remains finite only for s electrons with nonvanishing
values of |φs(0)|2.

On the other hand, an electron in a non-s orbital has zero amplitude at the nucleus position. It has
instead the spin-dipolar interaction Hd and the orbital hyperfine interaction Hl of the form:

Hd = −γngµB
1
r3

[
I · s − 3(I · r)(s · r)

r2

]
, (1.118)

Hl = γnµB
2
r3

I · l, (1.119)

where l is the orbital angular momentum of the non-s electron. In actual metals the orbital motion
appears as the orbital Knight shift which is usually independent of temperature.

Furthermore we mention the inner core polarization which is due to unpaired non-s electrons. These
electrons have vanishing amplitude at the nucleus, but can induce an unbalanced spin density of paired
inner s electrons. In contrast with the Fermi contact interaction, the sign of the hyperfine field due to
the core polarization is negative.

We now proceed to the many-body description of the hyperfine interaction. In heavy-electron systems
like Ce and U compounds, the spin-orbit interaction is so strong that the electronic state of an ion is
characterized by the total angular momentum as J = L + S and the magnetic moment −gJµBJ . The
lowest J manifold is furthermore split into several sublevels by the crystal electric field (CEF). We take
for simplicity a nucleus at the origin. The nuclear spin I and f electrons at site Rj interact through the
hyperfine interaction as

Hhyper =
∑

j

I · A(Rj) · J(Rj), (1.120)

where the sum is taken over all nearest-neighbor ions of lanthanides or actinides. The tensor A(Rj)
consists of the orbital and the spin parts projected onto the total angular momentum J(Rj). This is
in contrast to transition metals where spin and orbital parts survive separately because of much weaker
spin-orbit interaction. In the hyperfine coupling tensor A(Rj) in heavy-electron systems, the transferred
(indirect) hyperfine interaction plays a main role for the magnetic interaction for non-lanthanide nuclei.
The dipole-dipole interaction between f -electron spin and nuclear spin is unimportant and is neglected
in the following.

The hyperfine interaction causes the magnetic field at the nucleus to deviate from the external one H0

by an amount ∆H. Here we take the direction α of H to be one of the principal axes of the crystal to
avoid complexity. The shift satisfies the relation

γn∆H = Aα〈Jα〉, (1.121)

where 〈Jα〉 is the average of J(Rj) in the α-direction, and

Aα = Av
j

[A(Rj)]αα,

is the spatial average of the diagonal element of the hyperfine interaction. Let the number of f electrons
per unit volume be n. By definition of the static susceptibility χα we have

ngJµB〈Jα〉 = χαH0.

Then the Knight shift Kα defined by K = ∆H/H0 is expressed as

Kα =
Aα

nγngJµB
χα. (1.122)
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On can extract the transferred hyperfine field by plotting the Knight shift vs the susceptibility with
temperature as an implicit parameter, i.e.

Aα = nγngJµB (dKα/dχα) .

It often happens that the K vs χ plot is not linear in the whole temperature range. A straight line in the
high T range goes over to another one below a certain crossover temperature. This means that Aα in the
low T range is no longer the same as that in the high T range. This change occurs possibly because the
conduction electron spin polarized by the c-f mixing varies with temperature, which reflects the change
of the character of f electrons from localized to itinerant. In the NMR investigation for non-lanthanide
nuclei, the knowledge of the transferred hyperfine tensor enables us to extract a dynamical response
function from the nuclear-spin-lattice relaxation measurements. This leads to a quantitative comparison
with that derived by neutron scattering experiments.

1.4.3 Electric quadrupolar interaction

We now describe the electric quadrupolar interaction between electrons and nuclei with I > 1/2. These
nuclei have an aspherical charge distribution ρ(r), and therefore have an electric quadrupole moment
Q′

jk =
∫

ρ(r)xjxkdr. Let V (r) denote the electrostatic potential due to surrounding charges around
the nucleus, and Vjk = ∂2V (r)/ (∂xj∂xk)r=0 be the field gradient tensor at the nucleus. Then the
interaction Hamiltonian HQ of the quadrupole moment of a nucleus with the field gradient is given by

HQ =
1
2

∑
j,k

Q′
jkVjk + · · · . (1.123)

We can express the traceless tensor Qjk = 3Q′
jk − δjk

∑
i Q′

ii in terms of the nuclear spin I as

Qjk =
eQ

I(2I − 1)

[
3
2
(IjIk + IkIj) − δjkI2

]
. (1.124)

For an axially symmetric electric field gradient we define eq by

eq =
(

∂2V

∂z2

)
r=0

= −e

∫
dr

3z2 − r2

r5
n(r), (1.125)

where n(r) denotes the electronic density. Then HQ is given by

HQ =
e2qQ

4I(2I − 1)
[
3I2

z − I(I + 1)
]

(1.126)

with

eQ = Qzz = 3Q′
zz −

∑
i

Q′
ii =

∫
ρ(r)(3z2 − r2)dr. (1.127)

If the V (r) has no uniaxial symmetry, an additional term η(I2
x−I2

y ) enters into HQ with an asymmetry
parameter η = (Vxx − Vyy)/Vzz. Here x, y, z are taken to be the principal axes of the field gradient.
This electric interaction splits the nuclear spin levels into several multiplets, and the transition between
them causes a resonant absorption of radio-frequency. This is called the nuclear quadrupole resonance
(NQR). The important feature of the NQR is that the experiment does not need an external magnetic
field. For example, the NQR of 63Cu was observed at 3.91 and 3.43 MHz for CeCu6 and CeCu2Si2,
respectively. The NQR experiment is particularly advantageous in investigating low energy excitations
in the superconducting state at zero magnetic field. We note that the coupling of the nuclear quadrupole
moment with the lattice vibration opens another relaxation channel mediated by the charge fluctuation
in ionic or metallic crystals including nuclei with a large quadrupole moment. However in heavy electron
systems the magnetic relaxation channel prevails in most cases.
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1.4.4 Nuclear spin-lattice relaxation time T1

Nuclear spin-lattice relaxation in heavy-electron systems is mostly caused by f -electron spin fluctuations
through the transferred hyperfine interaction given by eq.(1.120). The relaxation rate 1/T1 defined by
eq.(1.114) corresponds to that of the nuclear magnetic susceptibility. In Appendix D we have given nec-
essary formulae to derive the relaxation rate by perturbation theory. The dynamics of the z-component
Iz of the nuclear spin is described by

∂Iz

∂t
= i[Hhyper, Iz] =

∑
j

[−Ax(Rj)Jx(Rj)Iy + Ay(Rj)Jy(Rj)Ix]. (1.128)

In the case where the hyperfine interaction can be treated in the lowest order, we obtain from eq.(D.12)

1
T1

=
T

2

∑
q

[|Ax(q)|2〈Jx(q)|δ(ωn − L0)|Jx(q)〉 + |Ay(q)|2〈Jy(q)|δ(ωn − L0)|Jy(q)〉] , (1.129)

where L0 is the unperturbed Liouville operator, and ωn is the frequency at the resonance which is
much smaller than the characteristic frequency of the electrons. The factor T in the right-hand side of
eq.(1.129) comes from 〈Iz|Iz〉 = βI(I + 1)/3 in the denominator. The quantity 〈. . .〉 is related to the
dynamical susceptibility of the f electrons. Namely with use of eq.(B.10) we have

〈Jx(q)|δ(ω − L0)|Jx(q)〉 = (gJµB)2Imχxx(q, ω)/ω. (1.130)

From eq.(1.130) we see that 1/T1 reflects sensitively the low-energy magnetic excitations. If the dynam-
ical response is dominated around a special wave vector Q, 1/T1T is directly connected to the slope at
the low energy tail around ω ∼ 0 of Imχ(Q, ω). Below we take typical examples of local moment and
itinerant electron systems and discuss the temperature dependence of 1/T1 for each case.

local moment system

We first consider the case of localized f electrons, the dynamics of which is described by the Heisenberg
model with the exchange interaction Jex. According to the formalism in Appendix D, the spectral shape
becomes of the Gaussian type if the short-time relaxation behavior dominates the spectrum. This is the
case in the paramagnetic state of the system. Then we have from eqs.(D.18) –(D.21)

〈M(t)|M〉 = (gJµB)2
J(J + 1)

3
exp

[
−1

2
〈ω2〉ct2

]
, (1.131)

where 〈ω2〉c = J2
exznJ(J+1) with zn being the number of nearest neighbors of interacting local moments.

From the eq.(1.129), we get
1
T1

=
√

2π
C|Ahf |2√〈ω2〉c

, (1.132)

where the q-dependent hyperfine coupling eq.(1.129) is replaced by the average Ahf over q. We note
that 1/T1 is independent of temperature in the present case.

On the other hand if the relaxation of local moments is caused by the exchange interaction Jcf with
conduction electrons, the relaxation function is dominated by the long-time behavior. Then the spectrum
undergoes motional narrowing with the linewidth of the order of J2

cf/D where D is the bandwidth of
the conduction electrons. The relaxation function is given by

〈M(t)|M〉 = (µBgJ)2
J(J + 1)

3
exp [−Γcf t]. (1.133)

for large time t. Since the long time behavior given above determines the spectrum, we can parametrize
the dynamical susceptibility as

χ(ω) =
CΓcf

T (Γcf − iω)
. (1.134)

From eqs.(1.129) and (1.130) we obtain
1
T1

=
C|Ahf |2

Γcf
. (1.135)

As will be discussed in the next section, Γcf has a linear T -dependence if f spins decay through coupling
with conduction electrons. Thus 1/T1 decreases as 1/T upon heating.
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itinerant electron system

For itinerant electrons at low temperatures, the Fermi liquid theory provides a reliable description as
presented in the previous section. We discuss 1/T1 on the basis of the quasi-particle RPA given by
eq.(1.78). In terms of the quasi-particle susceptibility χ∗

0(q, ω) we obtain

Imχ(q, ω) =
∣∣∣∣ χ(q, ω)
χ∗

0(q, ω)

∣∣∣∣2 Imχ∗
0(q, ω). (1.136)

Since Imχ(q, ω) is much smaller than Reχ(q, ω) in the relevant frequency range, we can approximate∣∣∣∣ χ(q, ω)
χ∗

0(q, ω)

∣∣∣∣2 ∼
(

1
1 + χ∗

0(q, 0)Z0/ρ∗(µ)

)2

, (1.137)

which acts as an enhancement factor in 1/T1.
We get the imaginary part of χ∗

0(q, ω) near the Fermi energy µ as

Imχ∗
0(q, ω) = πω

∑
k

(
− ∂f

∂ϵk

)
δ(ω − ϵk+q + ϵk) (1.138)

Furthermore we replace the enhancement factor by its average. Then we get

1
T1

= πA2
hfρ∗(µ)2T 〈

(
1

1 + χ∗
0(q, 0)Z0/ρ∗(µ)

)2

〉FS . (1.139)

where 〈· · ·〉FS means the average over the Fermi surface. If the enhancement factor is the same as that
for the q = 0 case, we have the so-called Korringa relation:

1
T1T

= π(
γn

µB
)2K2, (1.140)

where K is the Knight shift. Note that the result obtained above neglects the presence of anisotropy.
In reality, although magnetic properties in most heavy-electron systems are very anisotropic, there
are cases where the Korringa relation is valid for the actinide heavy-electron compounds. Since the
Landau parameters provide a quantitative description only in the isotropic case, due care is necessary
in interpreting experimental data.

As long as the temperature is much smaller than the Fermi energy, the quantity 1/(T1T ) is independent
of T . This property holds as long as the Fermi liquid is realized. We often call the constancy of 1/(T1T )
the Korringa law even though the stronger relation given by eq.(1.140) is not confirmed.

1.4.5 Nuclear spin-spin relaxation time T2

In heavy-electron systems, the indirect nuclear spin-spin interaction plays a primary role in the decay
of the transverse nuclear magnetization [32]. A nuclear spin at site R interacts with other nuclear spins
indirectly. First it interacts with the spin of a conduction electron at r through the hyperfine interaction
tensor A(r − R). The conduction electron propagates to another nuclear site and interacts with the
second nucleus via the hyperfine interaction. This indirect interaction is called the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction. The interaction Hamiltonian Hij between two nuclear spins Ii and
Ij is expressed as

Hij = −IiΦ̂(Rij)Ij (1.141)

where

Φ̂(Rij) =
∫

dr

∫
dr′A(Ri − r)χ̂(r − r′)A(r′ − Rj), (1.142)

with χ̂(r − r′) being the susceptibility tensor of the conduction electrons. Consequently, the calculation
of the indirect nuclear spin coupling is reduced to that of magnetic susceptibility χ̂(r) or its Fourier
transform χ̂(q). If we assume a contact hyperfine interaction given by A(Ri − r) = Asδ(Ri − r), the
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range of the interaction is simply determined by χ̂(r). In this case, the indirect interaction is written as

Φ̂(Rij) =
1
N

∑
q

Asχ̂(q)As exp(iq · Rij). (1.143)

For the free electron gas model, the above formula leads to the Ruderman-Kittel form for the indirect
nuclear spin-spin interaction. On the other hand in magnetically ordered states at temperatures well
below the transition temperature, χ̂(q) can be calculated by a spin wave approximation.

In the case where Φ(Rij)zz dominates over all the other components, the transverse relaxation spec-
trum becomes of the Gaussian shape. Namely in the spin-echo experiment one has

M⊥(2τ) = M⊥(0) exp

[
−1

2

(
2τ

T2G

)2
]
, (1.144)

where the relaxation rate 1/T2G is given by (1/T2G)2 = 〈ω2〉 with 〈ω2〉 being defined by eq.(D.21) in
Appendix D. In the lowest-order perturbation theory we assume for simplicity that the anisotropy of
Φ̂(Rij) comes from large Azz and that χ̂(q) is isotropic. Then we have(

1
T2G

)2

=
3I(I + 1)

4

∑
i̸=j

| Φzz(Rij) |2= A4
zz

3I(I + 1)
4

[
Avq χ(q)2 − (

Avq χ(q)
)2

]
, (1.145)

where Avq means the average over q. On the other hand, possible exchange interaction causes the
correlation function of the hyperfine field to decay with a time constant τC . If the exchange interaction
is strong, one has 1/τ2

C ≫ 〈ω2〉 where 〈ω2〉 is the second moment of the local field. In this case the
nuclear spin cannot feel the full magnitude of the local field and the NMR spectrum is narrowed. This
is called exchange narrowing. As a result the spin-echo has the simple exponential law with the decay
rate 1/T2L, which is roughly given by 1/T2L ∼ τC〈ω2〉.

In heavy-electron systems such as CeCu2Si2 the AF spin correlation develops at low temperatures even
though no magnetic order takes place. Then the enhancement of the susceptibility at the corresponding
Q vector should be reflected in the temperature dependence of T2. To show the characteristic behavior
we use the parametrization of the q-dependent susceptibility as given by eq.(1.89). Then we obtain(

1
T2

)2

∼
∫ (

χ(Q)
1 + q2ξ2

)2

dq ∼ χ(Q)2

ξ3
. (1.146)

In the typical case of χ(Q) ∼ ξ2(T ), we infer that (1/T2)2 ∼ ξ(T ). Therefore, 1/T2 is strongly enhanced
as the magnetic correlation length ξ(T ) grows up.

To summarize, important physical quantities to be obtained by the NMR in magnetic solids are the
Knight shift, the nuclear-spin-lattice relaxation time (T1), the nuclear spin-spin relaxation time (T2).
For the nuclear electric quadrupole (NQR) resonance, which does not need a magnetic field, the NQR
frequency and the relaxation time are relevant quantities. The internal field probed by the NMR in the
ordered state also provides valuable information on the dispersion relation of the spin-wave excitations.

1.5 Neutron Scattering

1.5.1 Characteristics and utility

Low energy neutrons with typical energy of 30-500 K and with wavelength in a range of 1- 5 Å interact
with nuclei and magnetic moments of electrons in solids. The corresponding scattering length is of
the order of 10−13 cm for the nuclear scattering, and of e2/mc2 = 2.8 × 10−13 cm for the magnetic
scattering. For magnetic materials, both cross sections are comparable. The magnetic Bragg scattering,
i.e. elastic scattering, provides information about the orientation and length of the magnetic moments
in the ordered state, and the shape of spin density of magnetic ions. Inelastic scattering in the ordered
state may determine the spectrum of elementary excitations like spin-waves. In the paramagnetic state,
on the other hand, study of wave-number dependence and the energy distribution of scattering neutrons
provides information about the magnetic correlation length and a characteristic energy scale in the spin
system.
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Neutron scattering experiment is a powerful tool to investigate the spin dynamics in the heavy-electron
system since the magnetic neutron scattering cross-section is proportional to the dynamical structure
factor S(q, ω), and to Imχ(q, ω). For magnetically ordered heavy-electron systems with tiny moments,
the elastic scattering profile often shows diffuse scattering instead of the true Bragg one. This shows that
the correlation length is finite in contrast to the case of true long-range order. This raises a fundamental
problem about the nature of heavy-electron magnetism, which is not yet resolved. In the following we
describe very briefly the basics of neutron scattering by magnetic moments. For more details of neutron
scattering we refer to standard monographs[33, 34].

1.5.2 Magnetic scattering

The interaction between a neutron (n) at the origin and an electron (e) at r is given by

V e = −µe · Hn(r) (1.147)

where µe is the magnetic moment of the electron, and Hn(r) is the magnetic field due to the neutron.
The latter is given by

Hn = ∇×
[
∇× (

µn

r
)
]
, (1.148)

where µn is the magnetic moment of the neutron. In the momentum space, the interaction is simply
written as∫

dr exp (−iq · r)Ve(r) = −4π [µn · µe − (µn · eq)(µe · eq)] = −4π (µn · µe⊥) , (1.149)

where eq is the unit vector along q, and µe⊥ denotes the moment of an electron perpendicular to q. In
deriving this result we use the fact that the Fourier transform of 1/r is given by 4π/q2, and that of ∇
by iq.

We consider a collision where the incoming neutron with momentum k0 and energy k2
0/2M is scattered

by the potential Hs =
∑

j V e(rj) due to many electrons in the solid. The outgoing neutron loses
momentum q and energy ω. The resultant momentum k1 and energy k2

1/2M should then satisfy

k0 = k1 − q,
k2
1

2M
=

k2
0

2M
− ω. (1.150)

The differential cross section d2σ/dΩdω which represents the number of outgoing neutrons in the solid
angle dΩ and in the energy range dω around the average value defined by k1 is the central quantity. We
specify the spin state of the neutron by σ, and the state of the scattering system by n. Then we obtain

d2σ

dΩdω
=

(
M

2π

)2 ∣∣∣∣k1

k0

∣∣∣∣ ∑
σ,σ′

∑
n,n′

PσPn | 〈k0σn | Hs | k1σ
′n′〉 |2 δ(En − En′ + ω), (1.151)

in the Born approximation. The Born approximation is justified since, with R the ionic radius, the
magnitude of the interaction is of order µeµn/R3 which is much smaller than the kinetic energy of
neutrons 1/(2MR2). In eq.(1.151), Pn = (1/Z) exp (−En/T ) is the probability of finding the scattering
system in the initial state n, and Pσ is the probability of finding the neutron spin in the initial state σ.

In order to derive the matrix element in eq.(1.151) we assume that only the spin part of the electronic
wave function is relevant to the collision, and that the spatial part remains the same before and after
the collision. In such a case we have

Hs = −4π
∑
q

F (q)M⊥(q) · µn, (1.152)

where we introduce the form factor F (q) which represents the spin density in momentum space, and the
transverse magnetization M⊥(q) which is defined only inside the Brillouin zone. Namely we have

F (q)M⊥(q) =
∑

j

µe⊥ exp(−iq · rj).
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The matrix element is then written as(
M

2π

)
〈k0σn | Hs | k1σ

′n′〉 =
A

2µB
F (q)〈σn | σ · M⊥(q) | σ′n′〉 (1.153)

where A = −gne/(2Mch̄) = 0.537 × 10−12 cm with gn = −1.91 being the g-factor of the neutron.
With these notations we obtain the compact formula

d2σ

dΩdω
=

(
A

2µB

)2 ∣∣∣∣k1

k0

∣∣∣∣ | F (q) |2
∑
α,β

〈σασβ〉
∫

dt

2π
e−iωt〈Mα

⊥(q, 0)Mβ
⊥(−q, t)〉 (1.154)

where the symbol 〈. . .〉 denotes the statistical average. In the case where neutrons are unpolarized, i.e.
〈σασβ〉 = δαβ , the cross section is reduced to

d2σ

dΩdω
= A2

∣∣∣∣k1

k0

∣∣∣∣ | F (q) |2
∑
α,β

(δαβ − eα
q eβ

q )Sαβ(q, ω), (1.155)

where the tensor Sαβ(q, ω) is called the dynamical structure factor. This quantity is related to the
imaginary part of the dynamical susceptibility tensor χαβ(q, ω) via the fluctuation-dissipation theorem:

Sαβ(q, ω) =
1
4π

Imχαβ(q, ω)
1 − exp(−ω/T )

. (1.156)

Here the factor 1/4 comes from the definition of χαβ(q, ω) according to eq.(1.56). The fluctuation-
dissipation theorem and its background is explained in Appendix B.

Since the correlation between Mα
⊥(q, 0) and Mβ

⊥(q, t) disappears for t → ∞,

lim
t→∞〈Mα

⊥(q, 0)Mβ
⊥(−q, t)〉 = 〈Mα

⊥(q)〉〈Mβ
⊥(−q)〉 (1.157)

is valid. Accordingly, the result of eq.(1.154) is divided into two parts,

d2σ

dΩdω
=

(
d2σ

dΩdω

)
elastic

+
(

d2σ

dΩdω

)
inelastic

(1.158)

(
d2σ

dΩdω

)
elastic

=
(

A

2µB

)2 ∣∣∣∣k1

k0

∣∣∣∣ | F (q) |2
∑
α,β

〈σασβ〉〈Mα
⊥(q)〉〈Mβ

⊥(−q)〉δ(ω)

(
d2σ

dΩdω

)
inelastic

=
(

A

2µB

)2 ∣∣∣∣k1

k0

∣∣∣∣ | F (q) |2
∑
α,β

〈σασβ〉

×
∫

dt

2π
e−iωt

[
〈Mα

⊥(q, 0)Mβ
⊥(−q, t)〉 − 〈Mα

⊥(q)〉〈Mβ
⊥(−q)〉

]
(1.159)

The first elastic part is referred to as the magnetic Bragg scattering and is nonzero only for a discrete
set of q values. If the magnetization density is periodic with some well-defined magnetic unit cell, the
average value of 〈M(q)〉 remains nonzero only for q = ±Q+Kn where Q is associated with the magnetic
order and Kn is the reciprocal lattice vector. Due to this selection rule of the Bragg scattering, the
detailed spin structure is determined even for complex spin arrangement such as helixes or spin density
waves.

The second inelastic part has no strong selection rules on q and ω, and gives the diffuse scattering.
The magnetic inelastic cross section in the paramagnetic state where 〈M(q)〉=0 is proportional to the
Fourier component of the spin correlation function of S(q). The integration of eq.(1.159) over ω is
derived with eq.(1.155) and eq.(1.156) as

dσ

dΩ
= A2

∣∣∣∣k1

k0

∣∣∣∣ | F (q) |2 T
∑
α,β

(δαβ − eα
q eβ

q )χαβ(q), (1.160)

which is proportional to the static susceptibility, χ(q). Therefore, the scattering intensity is significantly
increased upon cooling towards the ordering temperature TQ, since χQ diverges at TQ. This is the
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so-called critical scattering. In the ordered state, the magnetic inelastic scattering can probe spin-wave
excitations, leading to a direct measure of the dispersion relation.

The essential feature of the magnetic scattering profile in heavy-electron compounds is that it consists
of a superposition of two contributions at low temperatures: (i) q-independent (single-site) quasi-elastic
contribution which is of the Lorentzian shape, (ii) a strongly peaked inelastic contribution at finite wave
vector Q associated with intersite spin correlations. Furthermore there is a case where the most relevant
wavevector Q for the low-energy response changes as the temperature decreases. The same happens
also as a function of the energy transfer at low temperature. Thus, the neutron scattering experiment
provides a direct way to obtain detailed information on the wave-number and energy dependences of the
dynamical response function in heavy-electron systems.

By combining both NMR and neutron scattering experiments, we can study dynamical properties of
heavy-electron systems with different types of ground states. This is a central issue to be addressed
below in detail from both experimental and theoretical points of view.
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Chapter 2

Crossover from Localized Moment
to Local Fermi or Non-Fermi Liquid

2.1 Description of Singlet Formation

2.1.1 Renormalization of the exchange interaction

A fundamental theoretical model that can deal with the Kondo effect is called the Anderson model [1].
In the simplest version of the model, one considers an impurity with a nondegenerate localized orbital in
a metallic environment which has a single conduction band with the spectrum ϵk. The localized orbital
has the on-site Coulomb repulsion U , and the electron with spin σ is annihilated by the operator fσ.
The model is given by

HA =
∑
kσ

[ϵkc†
kσ

ckσ
+

1√
N

Vk(c†
kσ

fσ + f†
σckσ

)] +
∑

σ

ϵff†
σfσ +

1
2
U

∑
σ ̸=σ′

nfσnfσ′ (2.1)

where Vk is the strength of the hybridization, and N the number of lattice sites. It is straightforward to
generalize the Anderson model so that more realistic structures of the f shell and the conduction bands
are taken into account.

In spite of its simple appearance, the Anderson model has a remarkably rich physics including the
Kondo effect. There are already an enormous number of treatises on the Kondo effect in general [2, 3, 4],
and in particular on the exact solution with use of the Bethe ansatz [4, 5, 6]. In view of this situation
we avoid in this book a repetition of such treatment. Instead we emphasize the effective Hamiltonian
approach which naturally includes the concepts of scaling and the renormalization group.

As the first step to construct the effective Hamiltonian we consider the situation where the average
occupation of the f state is unity, and the charge fluctuation of the f state can be neglected. This
situation is realized when the f level ϵf is deep below the Fermi level (taken to be zero), and ϵf + U is
far above the Fermi level. Thus we work with the model space where f states are neither vacant nor
doubly occupied. The hybridization part Hhyb in HA connects the model space and the other states to
be projected out. According to eq.(1.38) the effective interaction in the lowest order is given by

Hint = PHhyb(Ei − Hc − Hf )−1QHhybP. (2.2)

Here the energy Ei can be taken as the zero-th order value. The intermediate fstates orthogonal to P
are either vacant or double occupied. Only a singlet pair consisting of an incoming conduction electron
and an felectron change into the doubly occupied state, which decays again by hybridization. In the
latter process we have two possibilities: either the spin of the conduction electron remains the same as
the incoming one or not. The resultant effective model is given by

Heff = Hc +
1
N

∑
kα

∑
k′

β

[
1
2
Jkk′S · σβαc†

k′
β
ckα

+ Kkk′δαβc†
k′

β
ckα

], (2.3)

where S is the impurity spin operator, and

Jkk′ = 2VkVk′ [
1

ϵk′ − ϵf
− 1

ϵk − ϵf − U
], (2.4)
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Kkk′ =
1
2
VkVk′ [

1
ϵk′ − ϵf

+
1

ϵk − ϵf − U
]. (2.5)

The model Heff can further be simplified by replacing Vk by a constant V , and by assuming that ϵk and
ϵk′ are negligible as compared with ϵf or ϵf + U . In the particular case of ϵf + U = |ϵf |, which is called
the symmetric case, the potential scattering given by Kkk′ vanishes, and Jkk′ becomes J = 2V 2/|ϵf |.
Then we obtain the so-called the Kondo model (or the s-d model):

HK = Hc + JS · sc = Hc + Hex, (2.6)

where sc is the spin operator of conduction electrons at the impurity site, and is given by

sc =
1

2N

∑
kk′

∑
µν

c†
kµ

σµνck′
ν
. (2.7)

The Kondo model, which may look even simpler than the Anderson model, generates in fact un-
manageable singularities in the perturbation theory in J . It is now understood that the singularities
mean that the starting point of the perturbation theory is inappropriate at zero temperature, however
small J is. The ground state is more easily understood if one uses the Anderson model for all values
of the parameters. On the other hand, at finite temperature the perturbation theory becomes more
and more accurate as one goes higher order in J . The best theoretical machinery to understand these
contrasting properties of the Kondo model is called the renormalization group, which will be discussed
shortly. Before going to the analysis of the Kondo model we introduce another related model. Namely
the Coqblin-Schrieffer model HCS [7] is defined by

HCS = Hc +
J

2
Pspin. (2.8)

where Pspin is the spin permutation operator which is explicitly written as

Pspin =
1
N

∑
kk′

∑
νµ

f†
νfµc†

kµ
ck′

ν
= 2S · sc +

1
2
n̂f n̂c. (2.9)

where n̂f (= 1) is the number operator of f electrons, and n̂c is that of conduction electrons at the
impurity site. The Coqblin-Schrieffer model is frequently used in the case of an orbitally degenerate
magnetic impurity because of its simplicity to generalize to arbitrary degeneracy.

Let us now turn to the renormalization treatment of the Kondo model. We use the effective Hamilto-
nian method explained in Chapter I as a variant of the perturbation theory. Suppose that the conduction
band extends from −D to D, and the Fermi level is at the center of the band µ = 0. Then we choose
the model space as the one which does not involve conduction states near the band edges. With this
restriction the exchange interaction should be modified into the effective one. This change of interaction,
which occurs in the process of reducing the model space, is called the renormalization. A very powerful
way to accomplish the renormalization is to eliminate the high energy states by an infinitesimal amount
in each step, and continue the process successively [8]. Let us illustrate the process in the following. In
the lowest order of the Brillouin-Wigner perturbation theory, we obtain the effective Hamiltonian as

Heff = P (Hc + Hex)P + PHex(Ei − Hc)−1QHexP (2.10)

where Ei is the energy of the state to be derived. We are interested in low energy states where |Ei|
is close to the ground state energy Eg of Hc. Choosing Q to project onto a space with conduction
states [D + δD, D] and [−D,−D − δD] with δD < 0 infinitesimal, we can safely replace Ei by Eg in the
denominator. Figure 2.1 shows the perturbation process.

Let us assign the spins σ, ξ and σ′ for the incoming conduction electron, the intermediate state with
high energy, and the outgoing electron, respectively. Then we look at scattering with a spin component
JSαsα

c for the right part, and JSβsβ
c for the left part. In Fig.2.1 (a) the matrix elements of sc are given

by
〈σ′|sβ

c |ξ〉〈ξ|sα
c |σ〉, (2.11)

which is called the direct scattering. For the scattering shown in Fig.2.1 (b) we similarly obtain

〈σ′|sα
c |ξ〉〈ξ|sβ

c |σ〉. (2.12)
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( a ) ( b )

Figure 2.1: Exchange scattering processes in second order. The solid line shows a conduction-electron
state, while the dashed line the impurity spin. The projection operator Q requires the intermediate
conduction-electron states to have energies near the band edges, which are opposite to each other in the
cases (a) and (b).

Since the energy of the intermediate state does not depend on ξ, summation over ξ can be carried out
independent of the energy denominator. Note that the process (b) acquires an extra minus sign because
an interchange of fermion operators is involved in evaluating the product of operators. Then we obtain
as the sum of (a) and (b)

J2

−D

∑
αβ

SβSα[sβ
c , sα

c ]|δD|ρc, (2.13)

as the second-order effective Hamiltonian. Here ρc = (2D)−1 is the density of conduction states per spin
per site assumed uniform. By using the commutation rule

[sβ
c , sα

c ] = −iϵαβγsγ
c , (2.14)

where ϵαβγ is the completely antisymmetric unit tensor, we find that the effective interaction takes the
same form as the original Hex, except that the strength is modified. Thus we obtain the change δJ of
the exchange interaction as

δJ = −δD

D
J2ρc. (2.15)

This differential relationship is called the scaling equation [8], or the renormalization-group equation.
The latter name stems from the fact that a succession of two renormalization processes can be regarded
as a different single process, and that each process of renormalization constitutes a kind of group element.
In contrast to the usual definition of a group, the renormalization group does not necessarily have the
inverse of an element. Precisely speaking, therefore, the renormalization group is a semigroup.

One can continue to eliminate the conduction states near the new band edge as long as the final
effective band width 2Deff is much larger than the energy scale we are interested in. This condition is
also necessary to justify the lowest order perturbation theory in each renormalization step. Under this
restriction one can integrate the scaling equation with the result

Jeff =
J

1 − Jρc ln(D/Deff )
. (2.16)

Here the boundary condition is such that Jeff = J for Deff = D.
The important feature of Jeff is that it increases as one decreases Deff , and finally diverges at

Deff = D exp[−1/(Jρc)]. This characteristic energy D exp[−1/(Jρc)] in temperature units is called the
Kondo temperature TK . Note that TK is a nonanalytic function of the exchange interaction. Of course
there is no guarantee for the renormalization to be valid down to Deff = TK . It simply says that the
perturbation theory breaks down as one goes lower and lower in energy scales. As we shall see later, TK

also enters into physical quantities such as the susceptibility and specific heat near zero temperature.
If one is working with a temperature T sufficiently higher than TK , it is necessary to take explicit

account of thermally excited conduction states. Then the renormalization should stop at Deff which is
of the order of T . The proportionality constant can be set to unity within the logarithmic accuracy. We
define the effective interaction in this case as

Jeff (T ) =
J

1 − Jρc ln(D/T )
. (2.17)
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If one replaces J by Jeff (T ) in the lowest order perturbative calculation of a physical quantity, say, the
resistivity or the magnetic susceptibility, the result reproduces infinite summation of leading logarithmic
terms [9].

Let us first explain the case of the resistivity ρ. In the simplest theory of electronic conduction in
metals the conductivity σ = 1/ρ is given by

σ =
ne2τ

m∗ , (2.18)

where n is the density of conduction electrons with effective mass m∗. The lifetime τ of conduction
electrons near the Fermi surface is given in the Born approximation by

1
τ

= 2πcimpJ
2
∑
α

S2
αTrcs

2
α =

3π

4
cimp

J2

ρ c

, (2.19)

where cimp is the concentration of magnetic impurities. We write the resultant resistivity as ρ0. In
the Born approximation, one does not take account of intermediate states with high excitation energies.
However in higher order perturbation in J , these states contribute to the leading logarithmic singularity.
If one uses Jeff (T ) in place of J , the intermediate states with high energies are correctly taken into
account. As a result of this replacement we obtain

ρ(T ) =
ρ0

[1 − Jρc ln(D/T )]2
=

ρ0

[Jρc ln(T/TK)]2
. (2.20)

This result is the same as the one obtained by infinite summation of perturbation terms [9], and reduces
to the original result of Kondo in O(J3). The resistivity thus increase logarithmically as the temperature
is decreased. The divergence at T = TK lies beyond the valid region of the effective Hamiltonian theory
and is merely an artifact of the approximation. Determination of the range of validity requires more
accurate analysis which will be discussed later.

As the next example we consider the relaxation rate Γ of the local moment. In the Born approximation
Γ is given by

Γ =
3π

4N

∑
k,p

J2f(ϵk)[1 − f(ϵp)]δ(ϵk − ϵp) =
3
4
π(Jρc)2T, (2.21)

which is usually referred to as the Korringa relaxation. Replacing J here by Jeff leads to

Γ(T ) = π

(
Jρc

1 − Jρc ln(D/T )

)2

T. (2.22)

Thus the relaxation rate is enhanced by the Kondo effect. In contrast to the resistivity to which ordinary
scattering also contributes, magnetic relaxation is dominantly given by the exchange interaction. Hence
the enhancement by the Kondo effect is conspicuous and the temperature dependence deviates drastically
from T -linear behavior. Again the divergence at T = TK should not be trusted.

2.1.2 Numerical renormalization group method

As the temperature approaches TK from above, the dimensionless coupling Jeffρc becomes of the order
of unity. Then the simplest renormalization described above breaks down. In order to proceed further,
Wilson developed a numerical renormalization group approach [10]. In this approach one can deal with
newly generated terms in the effective Hamiltonian very easily. We first pick out the s-wave part of the
whole conduction states since other parts do not couple to the magnetic impurity in the Kondo model.
Then we approximate the spectrum ϵk by the following form:

ϵk = vF k, (2.23)

where k is measured relative to kF . The range of momentum k is set to be k ∈ [−kF , kF ], which means
the band width of 2D = 2kF vF . In the following we take choose units so that the Fermi momentum is
unity: kF = 1. We introduce a set of discretized spherical orbitals φn around the impurity by averaging
the s-wave states over the k-space interval [Λ−n+1,Λ−n], where the parameter Λ ( > 1 ) controls the
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discretization. For negative momentum we form corresponding states by averaging over [−Λ−n+1,−Λ−n].
Then we make a unitary transformation from φn to a new Wannier-type basis in terms of which the
Hamiltonian matrix for the conduction band is given in the tridiagonal form. We refer to the original
paper [10] for the fairly complicated procedure to construct the basis set explicitly. The final form of
the Hamiltonian in the new basis is given by

HΛ = D
∞∑

n=0

Λ−n/2
∑

σ

(c†nσcn+1σ + c†n+1σcnσ) +
1
2
J̃

∑
αβ

c†0ασαβc0β · S, (2.24)

where J̃ is the exchange interaction in the new basis set. It is evident that the new Hamiltonian has the
tight-binding form where the transfer Λ−n/2 decreases exponentially as the orbital number n increases.
Only the innermost orbital 0 is coupled to the impurity spin S. We note that eq.(2.24) with J̃ = 0
describes the free electron band by definition.

In order to construct the effective Hamiltonian, which is nothing but the renormalization of the model,
we perform the projection Q successively. Namely, we first take certain manageable number ν of Wannier-
type orbitals near the origin and diagonalize the Hamiltonian matrix with this truncated subspace. By
explicit diagonalization we can arrange the resultant many-body states involving the impurity spin
according to their energies in the subspace. Then we shall keep only the lowest NP states and neglect
the others. This neglect amounts to the first step of projection Q in constructing the model space. We
newly add the orbital next to the ν-th one and construct many-body states by the direct product with the
NP states obtained by the first step of the renormalization. Then we diagonalize the Hamiltonian within
the newly constructed many-body subspace, and keep only the lowest NP states again. By repeating the
same procedure we can include states more and more remote from the origin in the effective Hamiltonian.
In this way we can see how the effective Hamiltonian converges in the limit of n → ∞.

The convergent form of the effective Hamiltonian, or the ground and low-lying states it describes, is
called a fixed point of the renormalization group. In the special case of J = 0 the fixed point must
be that of free electrons. The energy scale Λ−n/2 introduced in the n-th iteration corresponds to the
separation 2πvF /Ln of the free electron spectrum with Ln the size of the system corresponding to the
renormalization step. In other words, the minimum momentum in the logarithmic discretization is
proportional to the inverse of the system size. The spectrum of a free Fermi gas is given by

E =
2πvF

Ln

[
Q2

8
+

S(S + 1)
4

+ nQ + nS

]
, (2.25)

where Q = δn↑+δn↓ describes the number of electrons relative to the pure Fermi sea, and nQ(nS) are the
number of spin conserving (spin flipping) particle-hole excitations. These numbers are analogous to the
number of phonon excitations. Equation (2.25) is just another way of writing the energy of conduction
bands. For an even number of free conduction electrons the ground state is non-degenerate and the first
excited level is separated by 2πvF /Ln which has excess charge Q = ±1 and spin 1/2. For an odd number
of free conduction electrons the ground state is doubly degenerate with spin 1/2 since the one-electron
level nearest to the Fermi level is singly occupied.

In the case of the Kondo model, the fixed point Hamiltonian turns out to have the same spectrum as the
free conduction band. However, the spectrum with an even number of conduction electrons corresponds
to that of odd number of free conduction electrons. This represents the fact that the magnetic impurity
couples tightly with one conduction electron spin. The resultant spectrum with an even number of
conduction electrons has spin 1/2 and that with odd number has spin 0. We discuss this aspect of the
spectrum in more detail later in 2.3.1.

One can do the same thing for the Anderson model by just replacing the exchange interaction term
in eq.(2.24) by the hybridization term. It was demonstrated by Krishnamurthy et al [11] that as the
iteration proceeds the spectrum shows two alternating sequences as in the case of the Kondo model.

The most important conclusion of the numerical renormalization group is to elucidate the way the
ground state is approached as temperature is decreased. In the numerical renormalization group method
one can calculate the susceptibility for all temperatures [4, 10, 11, 12]. Below TK , the increase of the
impurity susceptibility becomes slow and saturates to a value of the order of C/TK with C the Curie
constant.
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2.1.3 Local Fermi-liquid theory

The fixed point of the Kondo model is described by a local Fermi-liquid theory of Nozieres, who revealed
that the phase shift of conduction electrons incorporates the many-body effect [13]. The term “local
Fermi-liquid” means that low-lying eigenstates of the system are one-to-one correspondence with those
of the Anderson model with U = 0. Hence the Fermi-liquid fixed point is accessible by perturbation
theory with respect to U if one works in the Anderson model. By analysis of the perturbation series
up to infinite order, Yamada derived a nontrivial relationship between the susceptibility and the specific
heat [14].

Here we present an alternative phenomenological approach which is in parallel to the original Fermi-
liquid theory of Landau. We first diagonalize the Anderson model without the Coulomb repulsion. If one
assumes spherical symmetry for hybridization, for simplicity, only the s-wave part of conduction states is
mixed. We therefore neglect in the following other conduction states with finite angular momentum, since
these states are not affected by the magnetic impurity. Each eigenstate is characterized by the radial
momentum p of the scattered s-wave and the spin. The Coulomb interaction among f electrons appears
now as an interaction among hybridized electrons. The quasi-particles in this case are characterized by
p and σ. Then the Landau interaction function is given by f(pσ, kσ′). The quasi-particle distribution
function is identical to the noninteracting one in the ground state. Namely it is unity if the energy of the
state is below the Fermi level, and zero otherwise. The deviation δnpσ from the ground state determines
the energy of the excited state. The latter is expanded as

E = Eg +
∑
pσ

ϵpσδnpσ +
1
2

∑
pσ

∑
kσ′

f(pσ, kσ′)δnpσδnkσ′ + O(δn3
pσ). (2.26)

As in the translationally invariant case, the expansion up to second order terms is sufficient to describe
the low-energy excitations. This includes the magnetic susceptibility and the low temperature limit of the
specific heat. The validity of this assumption can be confirmed by analysis of infinite-order perturbation
series [14, 15].

The low-energy excitations have δnpσ which is strongly peaked around the Fermi level. Provided the
interaction f(pσ, kσ′) is a smooth function of the momentum, one may replace p and k here by the Fermi
momentum pF . By rotational invariance we are then left with only two dimensionless parameters F and
Z given by

F =
1
2
[f(pF σ, pF σ) + f(pF σ, pF σ̄)]ρ∗, Z =

1
2
[f(pF σ, pF σ) − f(pF σ, pF σ̄)]ρ∗, (2.27)

where σ̄ = −σ and ρ∗ is the density of states of quasi-particles (for both spins) at the Fermi level. Since
we are dealing with a single impurity in a macroscopic number N of s-wave states, the parameters F
and Z are of order 1/N .

In terms of the effective Hamiltonian picture, f(pσ, kσ′) is regarded as the effective interaction for
zero momentum transfer in a fictitious one-dimensional system. The momentum in this system must
be positive since it is originally the radial part. To obtain the scattering amplitude between the quasi-
particles with small momentum transfer q and small energy transfer ω, we have to consider the repeated
scattering as shown in Fig.2.2. Each bubble in Fig.2.2 corresponds to the zeroth-order susceptibility and
is given by

χ0(q, ω) =
2
N

∑
k

kq/m∗

ω − kq/m∗ + iδ

(
−∂f(ϵk)

∂ϵk

)
, (2.28)

where m∗ is the effective mass of quasi-particles. The susceptibility is a function of the ratio vF q/ω with
vF being the Fermi velocity. In the case of vF q ≫ ω, which is called the q-limit, χ0(q, ω) tends to ρ∗.
In the opposite case of vF q ≪ ω, which is called the ω-limit, it tends to zero. Note that eq.2.28) is the
small-momentum limit of the form given by eq.1.46.

The Fermi-liquid parameters F and Z correspond to the forward scattering amplitude of quasi-particles
in the ω-limit. On the other hand the forward scattering amplitude a(pσ, kσ′) in the q-limit is given by

a(pσ, kσ′) = f(pσ, kσ′) − ρ∗
∑

τ

f(pσ, pτ)a(pτ, kσ′), (2.29)

which is obtained by repetition of the correction shown in Fig.2.2. From combinations of a(pσ, kσ′) as
in eq.2.27 we introduce the parameters A (spin-symmetric part) and B (spin antisymmetric part) which
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f f

Figure 2.2: Quasi-particle scattering in the second order in the effective interaction f(pσ, kσ′) . The
bubble in the center corresponds to χ0(q, ω).

are related to F and Z by
A = F/(1 + F ), B = Z/(1 + Z). (2.30)

In the most general case of the scattering amplitude 〈p1σ1, p2σ2|a|p3σ3, p4σ4〉 with incoming quasi-
particles with p3σ3, p4σ4 and outgoing ones p1σ1, p2σ2, the antisymmetry of the fermionic wave function
imposes a constraint:

〈p1σ1, p2σ2|a|p3σ3, p4σ4〉 = −〈p1σ1, p2σ2|a|p4σ4, p3σ3〉. (2.31)

In the particular case of the forward scattering we obtain a(pσ, pσ) = 0, which is equivalent to

A + B = 0. (2.32)

This relation is an example of the so-called forward scattering sum rule [16]. Therefore we are left with
a single independent parameter to characterize the quasi-particle interaction in the Anderson model.

Since the low-lying excitations of the system are quasi-particles, they should determine the specific
heat and the susceptibility. In the thermally excited case δnp is an odd function of p−pF . Therefore the
increase of energy is dominated by the term linear in δnp in eq.(2.26), as in the translationally invariant
system. This gives O(T 2) correction, while the quasi-particle interaction gives O(T 4) correction. We can
extract the impurity contribution to the specific heat from the change in the density of states. Namely
we introduce α = O(1/N) by

ρ∗ = ρc(1 + α) (2.33)

Then we obtain the impurity specific heat C as

C =
1
3
π2ρcαT ≡ γT, (2.34)

which is of O(1) since ρc is of O(N). On the other hand, the spin susceptibility χtotal
s of the whole

system is calculated as

χtotal
s =

ρ∗

4(1 + Z)
=

1
4
ρc(1 + α − Z) + O(

1
N

). (2.35)

Thus the impurity contribution χs of O(1) is given by

χs =
1
4
ρc(α − Z). (2.36)

Similarly the impurity contribution to the charge susceptibility χc is calculated as

χc = ρc(α − F ). (2.37)

We can now deduce an important relation between the specific heat and susceptibilities. Because of
the constraint A + B = F + Z + O(1/N2) = 0, we obtain

4χs + χc = 6γ/π2, (2.38)

or in units of noninteracting counterparts with suffix 0:

χs/χs0 + χc/χc0 = 2γ/γ0. (2.39)
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Figure 2.3: Lowest order effective potential in the 1/n expansion. For the f states, the wavy line shows
the vacant state, while the dashed line shows single occupied states.

In the case where the f level is singly occupied and U is large, the charge susceptibility is almost zero.
In this limit the ratio R of χs/χs0 to γ/γ0 goes to 2. Otherwise R takes a value between 1 and 2. The
quantity R measures the strength of the electron correlation at the impurity, and is often referred to as
the Wilson ratio .

There is also a remarkable dynamical relation as a consequence of the Fermi liquid ground state.
Namely the impurity contribution to the dynamical susceptibility is proportional to the square of the
static susceptibility. This relation is called the Korringa-Shiba relation. The rigorous proof of the relation
requires a detailed diagrammatic analysis for which we refer to the original papers [15, 17, 18]. In this
book, we give a less rigorous but more intuitive proof in 2.2.2 leading to eq.(2.71).

2.1.4 The 1/n expansion

The fixed point of the Anderson model is a spin singlet, and is connected continuously to the trivial
case of the vacant f state. It is found that in the limit of large degeneracy n of the f electron level,
the singlet state has an energy lower than the singly occupied state with a local moment. Therefore
perturbation theory in terms of 1/n should converge. Actually the small parameter 1/n appears as scaling
of hybridization. There is thus a chance of having a perturbation theory valid for all temperatures T ,
since at high T the expansion with respect to hybridization guarantees that the atomic limit is recovered.

Let us assume that the spin index σ in the Anderson model HA takes n different values and that U is
infinite. The resultant model, which is called the SU(n) Anderson model, is written as

HSU(n) = Hc + Hf + Hhyb. (2.40)

We introduce the hybridization intensity W0(ϵ) by

W0(ϵ) =
1
N

∑
k

|Vk|2δ(ϵ − ϵk), (2.41)

which is taken to be a constant W0 in the range −D < ϵ < D, and zero otherwise. We take nW0 as the
unit of energy, and use the Brillouin-Wigner perturbation theory to calculate the ground-state energy
[19]. In the case of the singlet state, the effective interaction (or rather potential in this case) is of O(1)
because of summation over all channels. This is shown in Fig.2.3. Taking the direct product of the
vacant f state and the Fermi sea as the model space |0〉, the ground-state energy E0 relative to the
Fermi sea is then given by

E0 = 〈0|Hhyb(E0 − Hc − Hf )−1Hhyb|0〉 = nW0

∫ 0

−D

dϵ

E0 + ϵ − ϵf
. (2.42)

In the extreme case of nW0 ≪ |ϵf | ≪ D, one can solve this equation analytically. Namely one obtains

E0 − ϵf ≡ −T0 = −D exp
(

ϵf

nW0

)
. (2.43)

On the other hand, the lowest energy of the multiplet state has at most O(1/n) corrections because
summation over n channels is absent for the intermediate states. Thus it remains ϵf to the leading order
and is higher than E0 by T0.

It is remarkable that such a simple calculation can identify the characteristic energy scale T0 in the
singlet ground state. The scale T0 corresponds to the Kondo temperature TK in the case where the
average occupation nf of the f state is almost 1. In the more general case nf is calculated as

nf =
∂E0

∂ϵf
= nW0

∫ 0

−D

dϵ
1 − nf

(E0 + ϵ − ϵf )2
∼ nW0

T0
(1 − nf ). (2.44)
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Namely we obtain

nf =
(

1 +
T0

nW0

)−1

. (2.45)

We can also obtain the magnetic susceptibility by the second derivative of E0(H) with respect to the
magnetic field H. The ground-state energy E0 in the presence of H is given by

E0 = W0

∑
Jz

∫ 0

−D

dϵ

E0 + ϵ − ϵf − gJµBJzH
. (2.46)

Straightforward calculation gives

χ = CJnf/T0, (2.47)

where CJ = (gJµB)2J(J + 1)/3 is the Curie constant with J = (n− 1)/2 the angular momentum of the
f state. Thus the susceptibility is also determined by T0.

One should recognize here that the excitation gap T0 between the singlet and the multiplet is an
artifact of the leading-order theory. In reality, there is no gap since the multiplet wave function can
extend to a macroscopic distance. As a result the lowest multiplet wave function has no difference from
the local singlet one near the origin. The presence of the gap is not a problem if one is interested only
in static properties, as we have seen above. However, it becomes serious if one discusses the dynamical
properties.

2.1.5 Effects of spin-orbit and CEF splittings

In order to understand experimental results, it is very important to take into account spin-orbit and CEF
splittings of the f shell. According to the energy scale of excitations or temperature, the apparent Kondo
temperature changes. Thus the Kondo temperature derived from the specific heat or the susceptibility
at low temperatures is generally smaller than the apparent Kondo temperature derived, for example, by
photoemission spectroscopy. Such changes of the Kondo scale explain the temperature dependence of
the magnetic relaxation rate measured by neutron scattering. In this section we explain how the real
and apparent Kondo temperatures are influenced by the presence of splittings.

Let us assume that each split level Eα in the f1 state has a degeneracy nα and hybridization intensity
Wα between the band edges [−D,D]. In the Brillouin-Wigner perturbation theory, the singlet ground-
state energy Es ≡ E0 − TK is given by

Es =
∑
α

Wα

∫ 0

−D

dϵ

Es − Eα + ϵ
(2.48)

In the case of D much larger as compared with other energies such as the level splittings and TK , we
may replace Es in the left-hand side by E0 to obtain

E0 ∼ n0W0 ln
TK

D
+

∑
α̸=0

nαWα ln
∆α

D
, (2.49)

where ∆α = Eα − E0. From eq.(2.49), we can solve for TK as

TK = D exp
(

E0

n0W0

) ∏
α̸=0

(
D

∆α

)nαWα/(n0W0)

, (2.50)

This result was first obtained by ref.[20] by a different method.
It is clear that TK in eq.(2.50) is enhanced by the presence of higher multiplet. However, if one

compares with the hypothetical Kondo temperature without any splitting, the actual TK is much reduced.
This observation becomes important when one consistently interprets experimental data taken with
different resolutions and temperature.
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2.2 Dynamics of the Kondo Impurity

2.2.1 Mean-field theory

As an approach from the ground state, the simplest is a mean-field theory which starts from the Fermi-
liquid ground state. We introduce boson operators b and b† to represent the vacant f state in the n-fold
degenerate Anderson model. The X-operators introduced in 1.3.2 are then represented by

X00 = b†b, Xσσ = f†
σfσ, Xσ0 = f†

σb, (2.51)

with the constraint
∑

σ f†
σfσ + b†b = 1. Namely, b† creates the physical vacant state by operating on

the fictitious vacuum of f states. If the constraint is regarded as an operator relation, fσ and f†
σ do

not obey the commutation rule for fermions. The same applies to b and b†. Another viewpoint is that
one uses the standard commutation rules for fermions and bosons and imposes the constraint as the
relevant subspace to be picked out from the full Fock space. The auxiliary particle representing the
vacant state is often called the slave boson . This kind of artifice was in fact used already for the Kondo
model [9] to represent the spin operators. The constraint was handled by a fictitious chemical potential
which goes to infinity at the end of the calculation. The use of the boson in the case of the Anderson
model was proposed later [21, 22] again with use of the Abrikosov technique. Because of the limiting
procedure, however, one cannot use the standard linked cluster theorem which leads to the Feynman
diagram expansion [23]. If one carefully selects a part of the Feynman diagrams, the result becomes
identical to the perturbation theory with use of resolvents as will be discussed later in this section.

In dealing with the Fermi-liquid ground state and low-energy excitations, a mean field theory was
introduced [24] in which the constraint is satisfied only as an average. Namely∑

σ

〈f†
σfσ〉 + 〈b†b〉 = 1. (2.52)

The average 〈b〉 = r should vanish in the exact theory because of the fluctuation of the phase of b. If
one neglects this aspect and determines r variationally, the model maps to another Anderson model
without the Coulomb repulsion. Namely we try to simulate the low-energy physics by the mean-field
Hamiltonian:

HMF =
∑
kσ

[ϵkc†
kσ

ckσ
+

1√
N

Vkr(c†
kσ

fσ + f†
σckσ

)] + ϵf

∑
σ

f†
σfσ + λ(nf + r2 − 1), (2.53)

where λ is the Lagrange multiplier to satisfy the constraint on the average, and Vk and r are taken to be
real. If the right-hand side of eq.(2.52) were n instead of 1, number fluctuations of O(1) are negligible as
compared with the average of O(n). Then the mean-field theory would become exact in the limit of large
n. Because of the actual constraint of O(1), the mean-field theory is different from the 1/n expansion
[25]. However the static property agrees with that derived by the lowest-order 1/n expansion as will be
explained below.

The mean-field parameters λ and r are determined by a variational principle. We write the statistical
average of an operator O in terms of the density operator exp(−βHMF ) as 〈O〉. Then the exact ther-
modynamic potential Ω of the SU(n) Anderson model HSU(n) is bounded by the Feynman inequality
[26]:

Ω ≤ ΩMF + 〈HSU(n) − HMF 〉. (2.54)

Thus we can optimize the parameters by minimizing the right-hand side. The second term is simply given
by −λ(nf + r2 − 1). The variation with respect to λ gives the constraint nf + r2 = 1. The optimization
of r yields

λr =
∑
kσ

Vk〈f†
σckσ〉. (2.55)

The stationary condition gives only a trivial solution r = 0 above a critical temperature TB (∼ TK).
Below TB the nontrivial solution r ̸= 0 is lower in free energy. The phase transition at T = TB is a
fictitious one which shows the inadequacy of the mean-field theory. However, at zero temperature the
mean-field theory gives the correct fixed point of the Anderson model. Therefore we restrict in the
following to the case of T = 0.
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It is convenient to use the Green function to calculate the average. The f electron Green function
G∗

f (z) is easily derived for HMF as follows:

G∗
f (z) = [z − ϵ̃f + i∆̃sgn(Imz)]−1, (2.56)

with ϵ̃f = ϵf + λ and ∆̃ = πr2W0. For the mixed type Green function Gcf (k, z) = 〈{c†
kσ

, fσ}〉(z) we
obtain

Gcf (k, z) = Gfc(k, z) = Vkr(z − ϵk)−1G∗
f (z). (2.57)

The resultant spectrum is interpreted as that of quasi-particles; hence the star (*) is attached to relevant
quantities. For example, the density of f electron states ρ∗f (ϵ) for each spin is given by

ρ∗f (ϵ) =
∆̃
π

1
(ϵ − ϵ̃f )2 + ∆̃2

. (2.58)

The occupation number nf is given by integration of ρ∗f (ϵ) up to the Fermi level. The result is

nf =
n

π
arctan

(
∆̃
ϵ̃f

)
. (2.59)

On the other hand, a little algebra with use of Gcf gives

∑
kσ

Vk〈f†
σckσ

〉 = nW0r ln


√

ϵ̃2f + ∆̃2

D

 , (2.60)

where we have assumed that ρc and Vk are constant for D > ϵ > −D and 0 otherwise. Thus eq.(2.55)
is equivalent to √

ϵ̃2f + ∆̃2 = D exp
(

λ

nW0

)
, (2.61)

where λ in the exponent can be approximated by −ϵf in view of the relation |ϵ̃f | ≪ |ϵf |. The left-hand
side sets the energy scale of the system. In fact the energy is the same as T0 obtained in §2.1.4

One can derive the static properties approximately with use of the mean-field theory. For example
the density of states ρ∗f (0) for quasi-particles at the Fermi level determines the specific heat at low
temperature. We obtain

ρ∗f (0) =
n∆̃

π(ϵ̃2f + ∆̃2)
=

n

π∆̃
sin2(

πnf

n
), (2.62)

The specific heat coefficient γ due to the impurity is given by

γ =
1
3
π2ρ∗f (0), (2.63)

while the magnetic susceptibility is computed as

χ = CJρ∗f (0) → CJnf/T0 (n → ∞), (2.64)

where CJ is the Curie constant. Therefore in the large n limit, the mean-field theory gives the correct
result. For finite n, however, the mean-field theory cannot derive the correct Wilson ratio. This is simply
because all the Landau parameters vanish by construction in the mean-field theory.

Let us give the relationship between the Green function G∗
f (z)derived by the mean-field theory and

the formally exact one Gf (z). In terms of the self-energy Σf (z), the latter is written as

Gf (z) = [z − ϵf + i∆sgn(Imz) − Σf (z)]−1, (2.65)

where ∆ = πW0. To extract the quasi-particle dynamics one expands Σf (z) near the Fermi level z = 0
as

Σf (z) = Σf (0) +
∂Σf (z)

∂z

∣∣∣
z=0

z + O(z2). (2.66)
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where the derivative is real in the Fermi-liquid state. Then we obtain near the Fermi level

Gf (z) = afG∗
f (z), (2.67)

where af = [1 − Σ′
f (0)]−1 is called the renormalization factor. The quasi-particle Green function G∗

f (z)
corresponds to the one obtained in the mean-field theory provided one makes identification

Σf (0) = λ, af = r2. (2.68)

Thus the mean-field theory can be regarded as the simplest approximation to perform the renormalization
explicitly.

2.2.2 Dynamical susceptibility in the local Fermi liquid

As the degeneracy n of the f orbital decreases, the interaction among quasi-particles becomes stronger.
Then one can improve the mean-field theory to incorporate the Fermi-liquid effects. We apply the quasi-
particle RPA explained in Chapter I to the present system. This is in fact exact in the low-energy limit,
and constitutes a convenient approximation in the spherically symmetric case because there is only a
single parameter to describe the interaction effect. The dynamical susceptibility of f electrons is written
as

nCJχ(ω)−1 = nCJχ1(ω)−1 − Ueff , (2.69)

where −Ueff is the effective interaction corresponding to Z0/ρ∗(µ) in eq.(1.78), and χ1(ω) is the polar-
ization function of quasi-particles with the f component given by

χ1(ω) = nCJ

∫
dϵ1

∫
dϵ2ρ

∗
f (ϵ1)ρ∗f (ϵ2)

f(ϵ1) − f(ϵ2)
ω − ϵ1 + ϵ2 + iδ

, (2.70)

with ρ∗f (ϵ1) being the density of states of f quasi-particles. The important point here is that the effective
interaction is real in the limit of small ω. Taking the imaginary parts of both sides of eq.(2.69) we obtain

lim
ω→0

Im
χ(ω)
ωχ2

=
π

nCJ
, (2.71)

where the right-hand side is obtained by noting χ1(0) = nCJρ∗f (0).
The relation eq.(2.71) is called the Korringa-Shiba relation. The remarkable feature is that the right-

hand side is independent of the interaction. The original proof was provided by diagrammatic analysis
for the spin 1/2 Anderson model [15].

2.2.3 Self-consistent theory at finite temperatures

We now turn to a microscopic approach to dynamics at finite temperature. As we have seen in the
previous section, the 1/n expansion is a powerful scheme which can describe correctly the singlet ground
state. Once we obtain the approximate wave function of the ground state by the 1/n expansion, we can
obtain a restricted class of excited states by applying the hybridization operator successively. Within
this manifold of states, matrix elements of physical operators are easily obtained, and then the excitation
spectrum such as the density of states can be derived at zero temperature. This direct 1/n expansion
approach to the dynamics has been made extensively to derive the photoemission spectrum [27]. However,
the direct expansion cannot eliminate the spurious energy gap of the order of TK from the singlet ground
state. We refer to a review article for further details of the direct expansion method [28].

In a self-consistent perturbation theory it is practical to perform partial summation of relevant pertur-
bation terms to infinite order. Since the spin operators (or more generally the X-operators) do not obey
the commutation rules of fermions or bosons, use of the standard many-body technique with Feynman
diagrams and the linked cluster expansion cannot be applied. As an alternative, we shall present a resol-
vent method which permits time-ordered diagrams to represent perturbation terms [29]. The resolvent
method leads to an effective atom picture which eliminates the degrees of freedom of the conduction
electrons. At zero temperature the effective atom acquires the same effective Hamiltonian as given by
the Brillouin-Wigner perturbation theory.

In order to pursue the effective atom picture we try to factorize the partition function Z of the SU(n)
Anderson model into the conduction electron part Zc and the local part Zf which includes the effect
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of interaction with conduction electrons [30]. We divide the Hamiltonian H into the unperturbed part
H0 = Hc +Hf and the perturbation H1 = Hhyb. In terms of the integration along a contour C encircling
the real axis in the counter-clockwise direction, Z is given by

Z =
∫

C

dz

2πi
exp(−βz)Tr

1
z − H

. (2.72)

The trace is over the direct product state |γ, c〉 from an f state |γ〉 and a conduction electron state |c〉.
We introduce a creation operator a†

γ of the f state and represent the direct product state as a†
γ |c〉. To

make a compact description we introduce the Liouville operator L by the relation LA ≡ [H, A] for any
operator A. Then we obtain

Ha†
γ |c〉 = ([H, a†

γ ] + a†
γH)|c〉 = (L + Ec)a†

γ |c〉, (2.73)

where Ec is the energy of |c〉. Repeated application Hn leads to (L + Ec)n operating on a†
γ |c〉. Thus we

rewrite eq.(2.72) as

Z =
∫

C

dz

2πi
exp(−βz)

∑
cγ

exp(−βEc)〈c|aγ
1

z − L
a†

γ |c〉 ≡ ZcZf , (2.74)

where for each |c〉 a shift of the integration variable by Ec has been made. Factoring out Zc =∑
c exp(−βEc) for the conduction electron part, the effective partition function Zf of f states is given

by [18]

Zf =
∫

C

dz

2πi
exp(−βz)

∑
γ

〈aγ
1

z − L
a†

γ〉c, (2.75)

with 〈· · ·〉c being the thermal average over conduction states. The average defines the resolvent Rγ(z) =
〈aγ(z − L)−1a†

γ〉c.
The density of states of the effective atom is given by the spectral intensity

ηγ(ϵ) = − 1
π

ImRγ(ϵ + iδ) = − 1
2πi

[Rγ(ϵ + iδ) − Rγ(ϵ − iδ)] = 〈aγδ(ϵ − L)a†
γ〉c. (2.76)

Then Zf is also written as

Zf =
∑

γ

∫ ∞

−∞
dϵ exp(−βϵ)ηγ(ϵ), (2.77)

which fits naturally with the effective atom picture. In terms of exact eigenstates |t〉 of H, Rγ can be
represented as

Rγ(z) =
1
Zc

∑
cγ

exp(−βEc)
|〈t|γ, c〉|2

z − Et + Ec
. (2.78)

Perturbation theory with respect to hybridization H1 can be performed by the expansion

1
z − L

=
1

z − L0
+

1
z − L0

L1
1

z − L0
+ . . . , (2.79)

where L = L0 + L1 in accordance with H = H0 + H1. Since H1|c〉 = 0, it can be easily shown that

L0L1a
†
γ |c〉 = L0[H1, a

†
γ ]|c〉 = L0H1a

†
γ |c〉 = [H0,H1a

†
γ ]|c〉 = (H0 − Ec)H1a

†
γ |c〉. (2.80)

Thus when acting on a†
γ |c〉, L1 can be replaced by H1 and L0 by H0−Ec. Hence the denominator z−L0

depends only on excitation energies from a state with Ec. This feature is very convenient in taking the
average over conduction states. The perturbation series generates a product of creation and annihilation
operators of conduction electrons. The average over conduction states can be performed by the use of
the factorization property

〈c†αcβc†γcδ〉c = 〈c†αcβ〉c〈c†γcδ〉c + 〈c†αcδ〉c〈cβc†γ〉c, (2.81)

which is an example of Wick-Bloch-de Dominicis theorem. A similar factorization property holds for
cases with more operators.
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Figure 2.4: The simplest self-energy for R1(z).

The simplest of perturbation processes for R0(z) is shown by the same diagram as Fig.2.3. This is the
only elementary process which survives in the limit of large n. The repetition of the process is accounted
for by the self-energy Σ0(z) defined by

R0(z) = [z − Σ0(z)]−1, (2.82)

Σ0(z) = nW0

∫ D

−D

f(ϵ)dϵ

z + ϵ − ϵf
. (2.83)

Note that the ground-state energy E0 relative to the Fermi sea in eq.(2.83) is given by E0 = Σ0(E0) at
T = 0. This leads to a threshold singularity in R0(z). At finite T or in higher order perturbation, the
resolvent has a cut singularity along the real axis of z and is analytic otherwise. In the exact theory at
T = 0, the cut extends from the ground state energy to infinity, as is clear from eq.(2.78).

The resolvent R1(z) is common to any of the degenerate f1 states. In the next leading order, R1(z) also
acquires the self-energy Σ1(z) as shown in Fig.2.4. The resolvent R0(z−ϵ) to be used in the intermediate
state should not be a bare one, but should be a renormalized one in order to be consistent with the 1/n
arrangement of perturbation terms. The use of renormalized resolvents in the intermediate states leads
to the following integral equations [29, 30, 31]:

Σ0(z) = nW0

∫ D

−D

dϵf(ϵ)R1(z + ϵ), (2.84)

Σ1(z) = W0

∫ D

−D

dϵ[1 − f(ϵ)]R0(z − ϵ), (2.85)

The solution of this set of equations corresponds to summation of all perturbation diagrams without
crossing of conduction-electron lines, and is called the non-crossing approximation (NCA) [32].

The NCA can derive not only the thermodynamics through the partition function, but dynamical
quantities such as the dynamical magnetic susceptibility χ(ω) due to the impurity [30], and the density
of f states ρf (ω) for single-particle excitations [30, 33, 34]. It can be shown that the NCA satisfies
conservation laws and sum rules required for response functions [30]. Let us first consider the dynamical
magnetic susceptibility χ(ω). It is given in the imaginary frequency domain by

χ(iνm) =
nCJ

Zf

∫
C

dz

2πi
exp(−βz)R1(z + iνm)R1(z), (2.86)

where the contour C encircles counter-clockwise all singularities of the integrand. After analytically
continuing the Matsubara frequency to the real axis, we are left with integration along the real axis with
the Boltzmann factor e−βϵ which becomes singular at T = 0. Then the following spectral intensity is
conveniently introduced as a quantity supplementary to resolvent:

ξγ(ϵ) = Z−1
f e−βϵηγ(ϵ) =

1
Z

∑
c,t

exp(−βEt)|〈t|γ, c〉|2δ(ϵ − Et + Ec) = 〈a†
γδ(ϵ + L)aγ〉. (2.87)

From the last expression, we understand that ξγ(ϵ) corresponds to the spectral intensity after annihilation
of the impurity state by aγ [18]. The spectral function −Imχ(ω)/π (see eq.(B.15) in Appendix B) is
given by

Imχ(ω) = (1 − e−βω)
nCJ

Zf

∫ ∞

−∞
dϵe−βϵη1(ϵ)η1(ϵ + ω) (2.88)

= nCJ

∫ ∞

−∞
dϵ[ξ1(ϵ)η1(ϵ + ω) − η1(ϵ)ξ1(ϵ + ω)]. (2.89)
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This expression naturally follows the effective atom picture, and it is easy to see that the line-width of
Imχ(ω) is given in terms of η1(ϵ) and ξ1(ϵ). Thus in the absence of hybridization the width vanishes
since we have η1(ϵ) = δ(ϵ − ϵf ) and ξ1(ϵ) = (nf/n)δ(ϵ − ϵf ). The actual width is controlled by the
Kondo temperature, as will be discussed later. It is clear that use of ξγ(ϵ) permits us to take the zero
temperature limit without the singular Boltzmann factor.

The static susceptibility χ on the other hand is given by

χ =
nCJ

πZf

∫ ∞

−∞
dϵe−βϵIm[R1(ϵ − iδ)2] (2.90)

= 2nCJ

∫ ∞

−∞
dϵξ1(ϵ)ReR1(ϵ). (2.91)

Of course the results given by eqs.(2.89) and (2.91) are consistent with the Kramers-Kronig relation.
The single-particle Green function Gf (z) is given by

Gf (z) = −i

∫ ∞

0

dteizt〈{fσ(t), f†
σ}〉 =

∫ ∞

−∞
dϵ

ρf (ϵ)
z − ϵ

, (2.92)

where the density of states ρf (ω) has been used. In the NCA, Gf (iϵn) in the Matsubara frequency
domain is given in terms of the resolvents by

Gf (iϵn) =
1

Zf

∫
C

dz

2πi
exp(−βz)R1(z + iϵn)R0(z). (2.93)

After analytic continuation we obtain the spectral intensity as

ρf (ω) = n(1 + e−βω)Z−1
f

∫ ∞

−∞
dϵe−βϵη0(ϵ)η1(ϵ + ω) (2.94)

= n

∫ ∞

−∞
dϵ[ξ0(ϵ)η1(ϵ + ω) + η0(ϵ)ξ1(ϵ + ω)]. (2.95)

The second equation indicates explicitly the excitation from the vacant f state to the filled one (electron
addition) and vice versa (electron removal).

At high temperature, the dynamical susceptibility can be calculated analytically since perturbation
theory with respect to hybridization is applicable. We introduce the magnetic relaxation rate Γ measured
by NMR as follows:

Imχ(ω)/ω = χ(0)/Γ. (2.96)

If the dynamical susceptibility can be approximated by a Lorentzian, i.e.

χ(ω) =
χ(0)Γ

−iω + Γ
, (2.97)

the rate Γ appears also as the half width in the neutron scattering spectrum.
To calculate Γ we note the identity

R1(z)R1(z′) =
R1(z) − R1(z′)

z′ − z − Σ1(z′) + Σ1(z)
. (2.98)

Then we use eq.(2.76) in making eq.(2.89) suitable for perturbation theory for finite but small ω. We
obtain

lim
ω→0

Im
χ(ω)

ω
= nCJβ

∫ ∞

−∞
dϵ

ξ1(ϵ)
ImΣ(ϵ)

. (2.99)

At high temperatures where the Curie law χ(0) ∼ CJnf/T holds, we can make an approximation to set
ξ1(ϵ) ∼ (nf/n)δ(ϵ − ϵf ). Then we obtain a simple result

Γ = −2ImΣ1(ϵf ). (2.100)

We can evaluate eq.(2.100) by perturbation theory. In the lowest order with respect to hybridization we
obtain

Γ = 2πW0[1 − f(ϵf )] = 2nπW0(n−1
f − 1). (2.101)
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Figure 2.5: The f electron density of states at various temperatures.

This quantity is independent of temperature T provided that the average occupation nf does not change
with T . In the valence fluctuation regime this is the relevant case. The result was first obtained with
use of the memory function method [35] which is explained in Appendix D. In the Kondo regime nf ∼ 1,
on the other hand, the lowest order result is exponentially small. One should therefore go to the fourth
order in hybridization. As we have discussed in §1, the evaluation amounts to second order in J . Then
the result reproduces eq.(2.21) obtained by the Born approximation. For general T , we can perform
numerical calculations to evaluate the integrals for response functions. Many results have been reported
[25] which compare favorably with experimental observation by neutron scattering or by photoemission
spectroscopy.

Figure 2.5 shows an example of the density of states ρf (ϵ)computed in the NCA [36]. A sharp peak
develops near the Fermi level at low temperatures, and is called the Kondo resonance. Note that the
density of states ρ∗f (ϵ) = ρf (ϵ)/af for quasi-particles should be even larger because the renormalization
factor af is much smaller than unity. The NCA can derive the density of states in the presence of
spin-orbit and/or the CEF splittings. Figure 2.6 shows an example of numerical results [37]. We note
that the overall intensity of the density of states is much larger than that expected from the Kondo
temperature. In the energy scale larger than the spin-orbit splitting, the effective degeneracy of the 4f1

configuration amounts to 14. Thus according to eq.(2.50) there is a large difference between the actual
TK determined by low-temperature properties and the apparent Kondo temperature determined by the
spectral shape. This observation is important to avoid confusion about the correct model to account for
spectroscopic results.

At T = 0 and in the limit of large n, one can derive nontrivial results analytically [38]. The lowest
order in 1/n expansion coincides with the mean-field theory with use of the slave boson, which was
explained in 2.2.1.

2.3 Deviation from the Canonical Behavior

2.3.1 Non-Fermi liquid ground state

The ground state of the Kondo model is not always the Kondo singlet. In order to explore a possible
non-singlet state, we consider HK given by eq.(2.6), but with the number of orbital channels n > 1.
Namely we consider the case

sc =
1

2N

∑
kk′

n∑
m=1

∑
αβ

c†
kmα

σαβck′
mβ

, (2.102)

where m denotes each channel. The magnitude S of the localized spin S is now not restricted to 1/2.
There are three cases which give different ground states: (i) n = 2S; (ii) n < 2S; (iii) n > 2S. In the

case (i) as in n = 2S = 1, the ground state is the Kondo singlet. Each channel screens spin 1/2 so that
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Figure 2.6: The f electron density of states in the presence of spin-orbit interaction

0  JC ¥

Figure 2.7: Scaling of the exchange interaction in the overscreened case.

the entire local spin S is completely screened by n channels. The fixed point corresponds to J = ∞. In
the case (ii), even though each conduction channel couples strongly to the impurity spin, the screening
is still incomplete because of the large spin S. As a result there remains a localized spin of S − n/2 in
the ground state. Although this fixed point corresponds to J = 0, the ground state cannot be reached
by perturbation theory since the localized spin has the magnitude S − n/2.

A new situation arises in the case of (iii). The fixed point corresponds to J = Jc which is neither
0 nor infinite [39]. To understand why this is so, let us consider a hypothetical case of J = ∞. Then
the conduction electrons overscreen the impurity spin by the amount n/2 − S. This extra amount now
acts as a new impurity spin which couples with the rest of conduction electrons. The resultant coupling
is antiferromagnetic since the Pauli principle allows only conduction electrons with spin antiparallel to
the new spin n/2 − S to hop into the impurity site and to gain the perturbation energy. Hence J = ∞
cannot be a fixed point. It is obvious that J = 0 cannot be a fixed point either. Hence the fixed point
is forced to have nonzero Jc. The scaling is schematically shown in Fig.2.7.

One can confirm this qualitative reasoning by renormalization to third order. Following the argument
of Appendix C, one obtains the scaling equation for the model given by eq.(2.102) as follows:

dg

d ln D
= −g2 +

n

2
g3, (2.103)

where g = Jρc is the effective exchange interaction. The right-hand side becomes zero when g = gc = 2/n,
which corresponds to the fixed point of renormalization. The large n means small gc. Then one can rely
on the perturbative renormalization to this order, since higher-order contributions can be shown to be
smaller by 1/n. The linearized scaling equation for δg ≡ g − gc is given by

dδg

d lnD
=

2
n

δg. (2.104)

The plus sign in the right-hand side means that the fixed point is stable.
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2.3.2 Mapping to one-dimensional models

From the Wilson form eq.(2.24) of the Hamiltonian, it is obvious that the system of a magnetic impurity
in a metal can be mapped to a one-dimensional model where the radial distance from the impurity plays
the role of the one-dimensional coordinate. Thus the impurity is on the left end of the system, and
the right end grows as the renormalization step proceeds. The s-wave part of conduction band states
with momentum k has the incoming and outgoing wave functions, which are interpreted as left-going
and right-going waves, respectively. Alternatively, a left-going wave exp(−ikx) with k and x positive
is reinterpreted as a right-going wave with momentum k and coordinate −x. In the latter picture the
conduction electrons are all right-going with verlocity vF . Their Hamiltonian is written as

Hc = vF

∑
kσ

kc†kσckσ, (2.105)

where k ∈ [−kF , kF ] is measured relative to the Fermi momentum. In order to understand the nature
of the spectrum with an impurity, it is necessary to analyze the spectrum of Hc with various kinds of
internal degrees of freedom.

The spectrum of Hc depends on the boundary condition. For the system size L, the periodic boundary
condition (PBC) and the anti-periodic boundary condition (A-PBC) requires, respectively,

k =
2π

L
×

{
n (PBC)

(n + 1
2 ) (A-PBC) (2.106)

with n integers. We introduce a quantum number Q which measures the change of electron number from
a reference state. In the case of spinless fermions, the change ∆E of the ground-state energy is given for
the PBC by

∆E =
2πvF

L

Q−1∑
n=0

n =
πvF

L
Q(Q − 1), (2.107)

where we take the vacant zero-energy state as the reference state. If one takes the A-PBC, one should
replace Q(Q − 1) by Q2. Actual electrons have spin degrees of freedom. In the absence of orbital
degeneracy we put Q = Q↑ + Q↓ and use the identity

Q2
↑ + Q2

↓ =
1
2
Q2 + 2S2

z , (2.108)

where 2Sz = Q↑ − Q↓. Then we obtain the energy for the A-PBC by

∆E =
2πvF

L

[
1
4
Q2 +

1
3
S2

]
. (2.109)

Here the particle-hole excitations that appeared in eq.(2.25) have been omitted for simplicity. For the
PBC one has

∆E =
2πvF

L

∑
σ

Qσ−1∑
n=0

n =
2πvF

L

[
1
4
Q2 − 1

2
Q +

1
3
S2

]
. (2.110)

With the shift Q → (Q − 1) in the above expression, one has the correspondence to the A-PBC result
apart from a constant term. The shift corresponds to take the new reference state as having one electron
in the zero-energy level. With the PBC we always take this new reference state in the following discussion.
Thus the boundary conditions for electrons require particular combination of quantum numbers as

(Q,S) = (even, integer) ⊕ (odd, half-integer), (A-PBC) (2.111)
(Q,S) = (even, half-integer) ⊕ (odd, integer), (PBC) (2.112)

The NRG calculation in the Kondo model shows that the spectrum of the model turns out to be the
same as that of free conduction electrons either with the PBC or the A-PBC depending on the odd or
even number of the NRG steps. The reason for this simple behavior is that the fixed point corresponds
to infinitely strong exchange interaction [40]. Namely the right-going electrons acquire the phase shift
δ = ±π/2 after passing through the impurity because of the exchange interaction. This phase shift is
equivalent to multiplying the factor exp(2iδ) = −1 to the wave function. Then the change from the
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(a) A-PBC
Q S l ∆E/(2πvF /L) degeneracy
0 0 0 0 1
0 1 1 1 9
±1 1/2 1/2 1/2 4
2 0 1 1 3
2 1 0 1 3

(b) PBC
Q S l ∆E/(2πvF /L) degeneracy
0 1 0 0 3
0 0 1 0 3
±1 1/2 1/2 0 8
±2 0 0 0 2
2 1 1 1 9

(c) two-channel Kondo model
Q S l ∆E/(2πvF /L) degeneracy
0 1/2 0 0 2
0 1/2 1 1/2 6
±1 0 1/2 1/8 2
±1 1 1/2 5/8 6
2 1/2 0 1/2 2
2 1 1 1 6

Table 2.1: Spectra of free right-going electrons with the anti-periodic boundary condition (a), and with
the periodic one (b). In (b), the origin Q = 0 is so chosen that the zero-energy level is filled by two
electrons. Also shown is the spectra for the two-channel Kondo model (c).

PBC to the A-PBC, or vice versa, is equivalent to having this phase shift. In other words, the amount
1/2 of conduction-electron spin is swallowed by the impurity by the Kondo screening without changing
the total number of conduction electrons. This results in the shift S → S ± 1/2 in the combination of
(Q, S).

Now we turn to the spectrum of the free conduction band with orbital degeneracy. The Hamiltonian
is given by

Hc = vF

∑
kσ

n∑
m=1

kc†kmσckmσ, (2.113)

where m denotes the same orbital channel as appears in eq.(2.102). After some algebra the spectrum is
now derived as

∆E =
2πvF

L

[
1
4n

Q2 +
1

2 + n
Cl +

1
2 + n

S2 + nQ + nl + nS

]
. (2.114)

where Cl denotes the eigenvalue of the second-order Casimir operator
∑

α(lα)2 where lα’s are n2 − 1
generators of the SU(n) group. The latter describes symmetry of the orbital channel. In the case of
doubly degenerate orbitals with n = 2, each generator lα is reduced to the Pauli spin matrix with
α = x, y, z, and the squared sum of them gives l(l + 1) with l a non-negative integer or a positive
half-integer. The quantum numbers nQ, nl, nS , which are non-negative integers, represent particle-hole
excitations from the ground state. In the terminology of the conformal field theory, the spectra associated
with various values of nQ, nl, nS are called descendants or conformal towers. The ground state of the free
electrons has a set (Q, l, S) = (0, 0, 0) with the A-PBC. With the PBC, on the other hand, the ground
state is 16-fold degenerate: the degeneracy 24 corresponds to filling or not filling the zero-energy level
for each species of fermions. One of the ground states has a set (Q, l, S) = (0, 1, 0) for example. Table
2.1 (a), (b) shows the spectrum of two-channel free fermions either with PBC or A-PBC.

We have seen in 2.3.1 that the multi-channel Kondo model has a fixed point which has a finite value of
the exchange interaction. As a result one cannot expect that the spectrum of the model is described by
a simple change of the boundary condition. The NRG calculation indeed reveals more complex structure
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of the spectrum. However description in terms of the spectrum given by eq.(2.114) is still valid provided
one attaches particular combinations of quantum numbers. For example the NRG calculation shows
that the ground state has a set of quantum numbers (Q, l, S) = (0, 0, 1/2). Obviously this combination
of quantum numbers is impossible in the free-electron case whatever the boundary condition chosen.
Physically, the quantum number S = 1/2 corresponds to overscreening of the impurity spin. Table 2.1
(c) shows the resultant spectrum given by eq.(2.114) with S = 1/2 and n = 2. It has been confirmed
that the low-energy spectrum derived by the NRG can be nicely reproduced by this analytical formula.
We refer to review papers [40, 41] for more detailed discussions.

According to the conformal field theory, only a part of the degeneracy in the ground state is associated
with the impurity states. This is related to the order of taking the thermodynamic limit and the zero-
temperature limit. For example the ground-state degeneracy of the two-channel impurity is derived to
be 2−1 ln 2 instead of ln 2. This feature is consistent with the exact solution by the Bethe ansatz theory
[42, 43].

2.3.3 Dynamics of the non-Fermi liquid state

The ground state in the overscreened impurity has many anomalous properties. It is, however, difficult to
derive these properties by elementary theoretical methods. Therefore we state only final results referring
to the literature [40, 41, 42, 43] for details of derivation. For example, it has been shown that the specific
heat is given by the power law:

C = C0

(
T

TK

)α

(2.115)

where α = 4/(n + 2). In the case of n = 2, the specific heat acquires the logarithmic term T ln T . The
temperature dependence of the susceptibility is also given by the power law with exponent α − 1 or by
a term ln T with n = 2. The impurity magnetization at T = 0 is given for small fields by

M ∼ (H/TK)2/n, (2.116)

for n > 2 and
M ∼ (H/TK) ln(H/TK), (2.117)

for n = 2. The resistivity behaves as ρ(T )/ρ0 ∼ 1 − cTα/2. The zero-temperature limit ρ0 is given by

ρ0/ρmax =
1
2

(
1 − cos[2π/(2 + n)]

cos[π/(2 + n)]

)
, (2.118)

where ρmax is the maximum value realized with n = 1, and is called the unitarity limit. The temperature
coefficient c is positive if the bare exchange interaction is smaller than the fixed point value Jc, and is
negative otherwise. In the latter case the resistivity should decrease with decreasing temperature in the
low-temperature limit, which contrasts with the Kondo effect.

There are efforts to investigate the non-Fermi liquid state in real systems. A candidate is a crystal
field ground state which is a non-Kramers doublet [44]. An example of this is Γ3 of U4+(5f2) ion with
in the cubic symmetry. If one introduces a quasi-spin to represent a pair of wave functions constituting
the non-Kramers doublet, the conduction electrons get two screening channels since they also have real
spins. The quasi-spin actually represents the dynamics of the quadrupole moment. Hence this kind of
overscreening is called the quadrupolar Kondo effect [44]. It has been shown that the non-Fermi liquid
ground state can be realized even for the Anderson model with a dominant f2 configuration and with
proper crystal field [45]. We discuss the experimental situation in 2.4.3

2.3.4 Pair of local moments with hybridization

Heavy electrons emerge as a result of interaction between many Kondo centers. As a necessary step
toward investigation of how the heavy electrons are formed, we consider the two impurity Anderson
model where the local moments can form a singlet either by mutual coupling or by the Kondo effect.
Suppose that two Anderson impurities are separated from each other by a distance R in a metallic
matrix. We assume that the occupation of each impurity is almost unity because of large U and |ϵf |. In
the limit of large R, the ground state is regarded as two Kondo singlets which are almost independent
of each other. The characteristic energy is given by the Kondo temperature TK .
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The Kondo exchange interaction Hex induces a new interaction between the local moments. The new
interaction is mediated by propagation of conduction electrons, and is called the RKKY interaction [46].
The effective Hamiltonian up to second order in Hex is given by

HRKKY = PHex(E0 − Hc)−1HexP, (2.119)
Hex = J [S1 · sc(R/2) + S2 · sc(−R/2)], (2.120)

sc(±R/2) =
1

2N

∑
kk′

∑
αβ

c†
kα

σαβck′
β

exp[±i(k − k′) · R/2], (2.121)

where Si with i = 1, 2 represents the local spin at site i, and each wave number is a vector instead of
the radial component. The projection operator P is onto the ground state of Hc plus all states of local
spins, and E0 is its ground state energy.

Calculation shows that HRKKY is written in the form:

HRKKY = JRKKY (R)S1 · S2, (2.122)

JRKKY (R) = −J2V

8N2

∑
q

χ0(q, 0) exp(iq · R), (2.123)

where χ0(q, 0) is the static susceptibility defined by eq.(1.46). It can be shown that JRKKY (R) decays as
cos(2kF R+θ)/R3 in the free-electron-like conduction band. Thus at large R, |JRKKY (R)| becomes much
smaller than the Kondo temperature. The ground state in this case is that of two almost independent
Kondo impurities, and the wave function is written as ψ2K .

In the opposite limit of small R, intersite interaction becomes significant. If the intersite interaction
JRKKY is ferromagnetic, the pair forms the triplet. Then the problem is reduced to the spin 1 Kondo
problem. If the interaction is antiferromagnetic, on the contrary, the two impurities form a pair singlet
by JRKKY . Then the Kondo effect does not occur. The wave function of the ground state is written as
ψPS . We now ask whether the two kinds of singlet states, ψPS and ψ2K , can be connected continuously
as the distance R changes.

The pair singlet is analogous to the Heitler-London picture for the ground state of the hydrogen
molecule. The zero-th order wave function for ψPS is given by

ψPS = (f†
1↑f

†
2↓ − f†

1↓f
†
2↑)φF . (2.124)

where φF represents the ground state of conduction electrons. In the presence of hybridization, ψPS

mixes with various states as shown in Fig.2.8. In particular the effective transfer from site 1 to site 2
becomes possible at the cost of U . In analogy to the hydrogen molecule, one can think of a molecular
orbital by linear combination of the two f-orbitals at different sites. The effective transfer causes splitting
of levels for bonding and anti-bonding molecular orbitals. In the limit of large transfer as compared with
U , the picture for the ground state is such that two electrons with opposite spins are accommodated
in the bonding orbital. With U = 0 the two-impurity Anderson model can be diagonalized easily. The
analogy to the molecular orbital for f electrons applies in this case. Actually the electron correlation
mixes the anti-bonding orbital in the ground state to some extent. As U increases, the ground state
has more component of the anti-bonding orbital, and changes continuously to the one described by the
Heitler-London picture, namely by ψPS .

On the other hand, the Kondo state is connected continuously to the U = 0 limit. Therefore ψPS and
ψ2K can be connected by continuous deformation through the U = 0 limit, namely the molecular orbital
picture. If one starts from the U = 0 limit and increases U , keeping the the total f electron number 2 by
appropriate shift of ϵf , the charge fluctuation is gradually suppressed. The resultant state is close to ψ2K

if J is small, while it tends to ψPS if J is large enough. This smooth change between ψPS and ψ2K rests
heavily on the presence of charge degrees of freedom. Namely it is important that the splitting between
bonding and anti-bonding orbitals does not completely vanish even with large U . On the other hand if
one uses the s-d (Kondo) model, the bonding-antibonding splitting does not have a meaning since there
is no charge fluctuation. Then in ψ2K the occupation of each orbital is strictly unity. According to the
local Fermi liquid theory, the density of states at the Fermi level is equal to (π∆)−1 for each orbital.
However ψPS can have a much smaller density of states at the Fermi level. Therefore the two kinds of
states cannot connect continuously. In other words, if one neglects the bonding-antibonding splitting
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Figure 2.8: Perturbation processes for ψPS . The two spins inside the dotted oval represents a singlet
pair. Circles show localized fsites which can have double occupation with finite U .

and increases J/TK , a discontinuous change should occur. This is an example of the quantum phase
transition at zero temperature.

Explicit calculations have been done with use of the numerical renormalization group [47, 48], and
the quantum Monte Carlo [49]. In the calculation by Jones et al [47] the s-d model was used and
the discontinuity is observed in going from ψ2K to ψPS . On the contrary Fye and Hirsch[49] used
the Anderson model and no discontinuity was found. Sakai and Shimizu [12, 48] clarified how these
contrasting behaviors are reconciled by changing the strength of the bonding-antibonding splitting,
which is also referred to as parity splitting. Figure 2.9 shows the f-electron density of states in the two-
impurity symmetric Anderson model [48]. In the absence of the parity splitting, the density of states at
the Fermi level should be the same as the one without the two-body interactions. This is a consequence
of the Friedel sum rule in the Fermi liquid side. As the intersite exchange increases, the density of states
near the Fermi level becomes narrow, and vanishes at the quantum phase transition to the pair singlet
state. The width becomes infinitely narrow just before the transition.

If the f-f hopping t is introduced in the two-impurity symmetric Anderson model, the density of states
can be non-symmetric around the Fermi level. Furthermore there is no constraint like the Friedel sum
rule at the Fermi level. Figure 2.10 shows the result of the NRG calculation [48] The result in Fig.2.10
shows that a smooth crossover from the local-moment limit and the itinerant Fermi-liquid limit occurs
with the f-f transfer. If this kind of smooth change occurs also in heavy-electron systems, the Fermi
surface should also change without discontinuity. This subject will be treated in more detail in the next
Chapter on heavy electrons.

2.4 Experimental Signatures of Local Spin Dynamics in f-Electron
Systems

At temperatures much higher than the characteristic energy of hybridization or intersite exchange inter-
action, many of lanthanide (Ce, Yb, etc) and actinide (U, Pu, etc) compounds behave as if they consist
of an assembly of local moments. This quasi-independent behavior continues sometimes down to low
temperatures as shown in Figs.1.1 and 1.2. In this chapter we deal with this regime of heavy electron
systems and valence fluctuation systems. In the case where the hybridization energy is larger than the
CEF level splittings, the splittings are smeared out. Then the large degeneracy n associated with the J
multiplet plays an important role in determining the characteristic energy scale which is typically 100 K.
For example we have n = 6 for Ce3+ and n = 8 for Yb3+. In many lanthanide compounds, the valence
fluctuating state has been probed by means of X-ray photoemission spectroscopy, measurement of lattice
constant and Mössbauer isomer shift. In the valence fluctuation regime, the strong hybridization effect
leads to both charge and spin fluctuations. As a consequence the number nf of f electrons is less than
one.

On the contrary, if the hybridization between the f - and conduction electrons is relatively weak, the
charge fluctuation is suppressed since the Coulomb repulsion between f electrons is strong. In the latter
case the hybridization generates the exchange interaction Jcf between f - and conduction electron spins.
This case is referred to as the Kondo regime. The characteristic energy scale, TK , in the Kondo regime
is typically 10 K. In most cases, the CEF splitting becomes larger than TK .s

At high temperatures, an assembly of local moments behaves as independent Kondo scattering centers.
For example the Curie-Weiss behavior of the susceptibility appears and the log T -anomalies of the resis-
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Figure 2.9: Density of states of felectrons (solid line) for the model without the parity-splitting terms
[48]. The parameter J denotes the intersite exchange in units of the half-width of the conduction
band. The other parameters are ϵf = −0.4 (f-electron level), Wi = 0.03 (hybridization intensity for
channels i =even, odd), and U = 0.8. The direct f-f transfer energy t is set to zero here, and the even
parity occupation number e, and the odd parity occupation number o are the same without the parity
splitting. The dot-dashed line represents the imaginary part of the uniform magnetic susceptibility,
the two-dot-dashed line the staggered susceptibility (both scaled to 1/4), the three-dot-dashed line the
superconducting response function (scaled to 2).
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Figure 2.10: Spectral intensities (solid line) of the model with the parity-splitting terms [48]. The solid
line (dashed line) denotes the even (odd) component of the f-electron density of states. The other
notations are the same as those used in Fig.2.9. The transfer is taken to be t = 0.01 in all cases.

tivity takes places. Therefore, various aspects of the Kondo effect including the dynamical characteristics
can be investigated by means of NMR and neutron scattering experiments of sufficient accuracy. This
situation contrasts with the case of the 3d-transition-metal alloys, in which the single-ion Kondo effect is
easily suppressed by the indirect RKKY interaction and the spin glass transition takes place even with
low concentrations of magnetic ions. Furthermore, small numbers of dilute impurities prevent us from
extracting reliable data with respect to the spin dynamics of magnetic impurities. In contrast to the
transition metal, both the Kondo and the CEF effects should be taken into account self-consistently in
rare earths since the splitting of CEF levels becomes comparable to TK . As a result, the Kondo effect is
accompanied by transitions between the levels and causes damping of the levels.

At low temperatures in the Kondo regime, the CEF level scheme can be analyzed in terms of a single
ion picture. The crystal field effect arises from the electrostatic potential of surrounding ions acting on
f electrons. The CEF Hamiltonian is given by

HCEF = e
∑

i

V (ri). (2.125)

Since V (ri) is expanded by the spherical harmonics Y m
l (θ, φ) where l=3 for f electrons, HCEF is ex-

pressed by a polynomial of total angular momentum Jz, J+, J− and J2. By introducing the equivalent
operators such as O0

2 = 3J2
z − J(J + 1), O2

2 = J2
+ + J2

−, HCEF is calculated [50, 51] as

HCEF =
∑
n,m

Bm
n Om

n , (2.126)

where Bm
n is the crystal field parameters to be determined from experiments such as inelastic neutron

scattering. The CEF Hamiltonian HCEF for a rare-earth ion has the maximum number n = 6 which is
twice the orbital angular momentum l = 3 of the f orbital. For Ce3+(J = 5/2), the maximum is n = 4
because 2J < 6. By diagonalizing eq.(2.126), one can obtain the CEF energies En as functions of the
CEF parameter B0

2 , B0
4 and B4

4 . It is also possible to derive the matrix elements. For neutron scattering,
relevant matrix elements are |〈n|J⊥|m〉|2 where J is the projection of the total angular momentum onto
the plane perpendicular to the scattering vector Q.
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The difference in the characteristic energy scales between the valence fluctuation and the Kondo
regimes manifests itself in the T dependence of the magnetic relaxation rate. If the dynamical suscepti-
bility is isotropic and can be approximated by a Lorentzian with the relaxation rate Γ, 1/T1 is expressed
as

1
T1

= 2γ2
nT |Ahf |2 χ(T )

Γ
, (2.127)

where Ahf is the average hyperfine field discussed in Chapter 1. For quasielastic neutron scattering, the
magnetic cross section is derived from the combination of eqs.(1.155), (1.156) and (1.85) as

d2σ

dΩdω
= A2 k1

k0
|F (q)|2χ(T )

ω

1 − exp(−ω/T )
Γ

Γ2 + ω2
. (2.128)

Thus Γ appears as the half width in the quasielastic neutron scattering spectrum.
In the limit of small ω, the imaginary part of χ(ω) obeys the Korringa-Shiba relation given by eq.(2.71).

Accordingly, with the T1T=constant law at low temperatures we can estimate Γ by the relation

Γ = 2γ2
nT1Tχ(0)|Ahf |2 (2.129)

The NMR relaxation rate and the half-width of the quasielastic magnetic neutron scattering spectrum
to be presented below can be understood in a consistent way.

2.4.1 Valence fluctuating regime

NMR

In most cases, NMR experiments on the valence fluctuating materials are thus far restricted to the non-
lanthanide nuclei. The first NMR experiment using 139Yb was reported by Shimizu[52]. The valencies in
YbAl2 and YbAl3 are determined from the experiments as 2.4 and 2.7 ∼ 3.0, respectively. The magnetic
susceptibility of YbAl2 is T independent below about 200K and exhibits a broad maximum near 850K,
which is assigned as T0. The susceptibility of YbAl3 also exhibits a maximum at T0=125K above which
Curie-Weiss behavior is observed with the effective moment nearly equal to that of a free Yb3+ ion.

From the observed spin-echo spectra of 139Yb, the Knight shifts (K) are obtained as K = 7.7% for
YbAl2 and 100% for YbAl3. Both are T independent in the measured temperature range of 4.2−80 K
and 1.4−4.2 K, respectively. The Knight shift as well as the susceptibility consists of both contributions
from the 4f electrons (K4f and χ4f ) and the conduction electrons (Kce and χce). Since both Kce and χce

are negligible compared with K4f and χ4f , the hyperfine field Hhf = K4fµB/χ4f due to 4f electrons is
dominant. Then the hyperfine interaction is obtained as As=1.1 and 1.2 MOe/µB for YbAl2 and YbAl3,
respectively. On the other hand, As(Yb3+) of a free Yb3+ ion is the sum of the orbital and dipole fields.
With use of the Hartree-Fock value of 〈1/r3〉4f , they can be calculated as As=1.15 and 2.07 MOe/µB

for J=7/2 and 5/2, respectively. It is notable that the experimentally deduced As for both compounds
are consistent with the calculated value for the J = 7/2 ground state of a free Yb3+ ion. Furthermore
an experimental value obtained from the hyperfine splitting of Yb3+ ESR in CaF2 is also consistent with
these results (As(ESR)=1.04 MOe/µB). It should be noted that the Yb2+ state has no contribution
to K4f and χ4f . Accordingly, it is deduced that the character of the 4f ground state wave function
specified by the total angular momentum J is still conserved in these valence fluctuation compounds in
spite of the strong hybridization effect.

Adequate knowledge of the hyperfine interaction allows us to extract the magnetic relaxation rate
Γ for 4f spins in valence fluctuation compounds from the measurement of 1/T1. The T dependence
of 1/T1 in YbAl2 and YbAl3 is shown in Fig.2.11. For both compounds, 1/T1 is proportional to the
temperature, having T1T = (3.5 ± 0.1) × 10−2sK for YbAl2 and (1.6 ± 0.1) × 10−4sK for YbAl3. From
eq.(2.129), Γ’s are evaluated as 1.5 × 104 K for YbAl2 and 9.7 × 102 K for YbAl3, respectively, both
being temperature independent. By combining eq.(2.71) and the Knight shift, the Korringa relaxation
for nuclei at impurity or f ion sites is obtained at T ≪ TK as

T1TK2 =
CJ(2J + 1)

2πγ2
n

. (2.130)

The Korringa constant in the right hand side in the eq.(2.130) is calculated to be 2.29 × 10−4sK for
the J = 7/2 ground state of Yb3+ ions. Experimentally, the Korringa constant on the left hand side
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Figure 2.11: Temperature dependences of 139(1/T1) in YbAl2 and YbAl3 (inset) [52].

in eq.(2.130) is obtained as T1TK2 = 2.0 × 10−4sK for YbAl2, and 1.6 × 10−4sK for YbAl3. The good
agreement between the theory and the experiment for YbAl2 implies that the spin fluctuations possess
a local character and are well described in the framework of a single impurity model, even though the
Yb ions form a periodic lattice. For YbAl3, however, the theoretical value is somewhat larger than the
experimental value. This may be because the dynamical response function is different between dilute
and periodic 4f ion systems and/or the degeneracy of J = 7/2 ground states is lifted partially, so that
the application of eq.(2.130) becomes unjustified.

neutron scattering

Ce-based compounds in the valence fluctuation regime were extensively studied by magnetic neutron
scattering experiments. The quasielastic relaxation rate Γ is very large, reaching to several tens of meV.
In the valence fluctuation regime, the intersite magnetic correlation driven by the RKKY interaction is
masked by the local hybridization with conduction electrons. No CEF transitions are resolved in these
compounds. By integrating the magnetic scattering cross section given by eq.(2.128) over ω for fixed Q,
one can obtain g2

JJ(J + 1)F (Q)2.
Equation (2.128) holds well for all rare earth (RE) metals with a stable valence at high temperatures.

However, the energy spectrum becomes more complex upon cooling, as Γ(T ) is decreased to the order
of the CEF splittings or magnetic ordering energies. On the other hand, the scattering profiles in the
Ce-based compounds are quite different. As an example, we take CePd3, which is compared with the
isostructural reference compounds diamagnetic YPd3 which has no 4f electrons, and TbPd3 with a
stable 4f8 configuration [53]. Figure 2.12 indicates the energy dependence of the inelastic scattering
cross section for those compounds. All three compounds exhibit incoherent elastic scattering at ω = 0
due to nuclear isotopic and/or nuclear spin disorder. This contribution is shown by the shaded part
in Fig.2.12. For YPd3, there is a phonon peak between h̄ω = −20 meV and −10 meV, while CePd3

has a considerable intensity in this energy window in addition to phonon scattering. In contrast to the
coherent phonon scattering, the integrated intensity in this energy window decreases with increasing
scattering angle and has the angular dependence expected from the magnetic 4f form factor.

The magnetic scattering profile in CePd3 is actually fitted by the solid lines according to eq.(2.128)
employing the experimental values of the susceptibility. From this fitting, Γ(T ) is deduced as shown
in Fig.2.13. For TbPd3, the quasi-elastic spectrum becomes sharper upon cooling as seen in Fig.2.13.
Its linewidth decreases linearly with temperature, if extrapolated from the resolution limit of the spec-
trometer. We also note that TbPd3 shows a distinct CEF transition. Thus, difference of the magnetic
scattering is clear between CePd3 and TbPd3. For CePd3, a quasi-elastic linewidth amounts to about
20 meV, which is nearly three orders of magnitude larger than that in TbPd3. It is remarkable that this
width is nearly T -independent in a range of 200−300K. This is again in contrast to the normal Korringa
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Figure 2.12: Scattered neutron intensity as function of energy for the isostructural compounds, (a) YPd3,
(b) CePd3 and (c) TbPd3[53].

behavior observed for TbPd3. Note that below 200 K, the linewidth actually exceeds kBT . Therefore,
the decay of local 4f moments is not driven thermally but quantum mechanically. The hybridization
effect between f - and conduction electrons is responsible for the magnetic ordering or the development
of CEF spectra on a energy scale smaller than Γ. All these features are a general property in valence
fluctuation compounds with nonmagnetic ground states. Apparently the behavior of Γ(T ) in the valence
fluctuation regime is well described by eq.(2.101) [54].

Figure 2.13: Temperature dependences of the quasi-elastic magnetic half-width Γ/2 for (a) the valence
fluctuation system CePd3 and (b) the local moment system TbPd3[53].

2.4.2 Kondo regime

NMR

The Knight shift for non-transition elements such as Al, Si, Sn, As, etc in heavy-electron compounds is
dominated by an isotropic hyperfine interaction, even when the magnetic properties are highly anisotropic.
This empirical result enables us to estimate the low energy scale in the Kondo regime by comparing NMR
of non-Lanthanides elements with the quasi-elastic neutron scattering intensity. In the low energy region,
the ground state doublet in the CEF levels plays a primary role. In this case, from the measurement of
T1, the magnetic relaxation rate Γ of the f electron can be extracted by eq.(2.127). In order to compare
the results of the NMR and neutron scattering experiments, we present the 29Si NMR investigation in
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Figure 2.14: Temperature dependence of the Knight shift K∥(T ) parallel to the tetragonal c-axis, and
K⊥(T ) perpendicular to the c-axis in CeRu2Si2 [55].

CeRu2Si2 [55].
From a characteristic powder pattern of the NMR spectrum, the T dependence of the Knight shift,

parallel (K∥) and perpendicular (K⊥) to the tetragonal c-axis in CeRu2Si2 is obtained as displayed
in Fig.2.14. There appears a huge uniaxial anisotropy in the Knight shift. In fact, the anisotropy of
susceptibility measured for the single crystal is as large as χ∥/χ⊥ ≅ 15. From plotting an isotropic
Knight shift defined by Kiso = (K∥ + 2K⊥)/3 against the susceptibility measured for the powder, we
estimate a parallel component of the hyperfine field A∥ and the anisotropy of the susceptibility at 4.2 K
as A∥ = 0.91± 0.06 kOe/µB and χ∥/χ⊥ ≅ 18, respectively. Thus we conclude that the anisotropy of the
Knight shift does not originate from the hyperfine interaction, but from the susceptibility.

Figure 2.15: (a) Temperature dependences of (1/T1)⊥ and (1/T1)∥. (b) Temperature dependence of Ce
spin fluctuation rate, h̄/(τ∥kB) = Γ∥(T ) parallel to the c-axis [55].

We now have an adequate knowledge of the transferred hyperfine interaction of 29Si, which is isotropic
and dominated by the hybridization effect with five nearest neighbor Ce-4f electrons. Next, we inspect
the relaxation result shown in Fig.2.15. Part (a) of the figure indicates the T−dependences of (1/T1)∥
and (1/T1)⊥. Both (1/T1)∥ and (1/T1)⊥ exhibit a weak T dependence above the temperature at which
both the susceptibility and the Knight shift have a peak. However, below 8 K they follow commonly
the relation T1T=constant. We emphasize that the value of (T1⊥T )−1 = 1.0 ± 0.05(sK)−1 is two
orders of magnitude larger than (T1T )−1 = 0.014 ± 0.005(sK)−1 for LaRu2Si2. This verifies that the
relaxation process in the former is governed by spin fluctuations of f electrons. If we take into account
the anisotropic magnetic property in eq.(2.127), (1/T1)∥ and (1/T1)⊥ are related to the dynamical
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susceptibility components χ∥(ω) and χ⊥(ω) of 4f electrons as

1
T1∥

= 2γ2
nT

∑
i

[A⊥,i]2
Imχ⊥(ωn)

ωn
, (2.131)

and
1

T1⊥
= 2γ2

nT
∑

i

(
[A∥,i]2

Imχ∥(ωn)
ωn

+ [A⊥,i]2(1/2)
Imχ⊥(ωn)

ωn

)
(2.132)

respectively. By combining the above two formulae, we have the relation

1
T1⊥

− 1
2T1∥

= 2γ2
nT

∑
i

[A∥,i]2
Imχ∥(ωn)

ωn
(2.133)

where A∥,i is the transferred hyperfine field parallel to the c-axis due to five nearest neighbor 4f spins. In
the present case, one can safely approximate

∑
i[A∥,i(Ri)]2 by z(A∥/zn)2 = A2/zn where A∥ = 0.91±0.06

kOe/µB is determined from the plot of Kiso vs χiso with zn the number of nearest neighbor 4f ions
(zn = 5 for 29Si of CeRu2Si2).

By combining eqs.(2.127) and (2.133), (1/T1)∥ and (1/T1)⊥ are related to the magnetic relaxation rate
Γ∥ by the formula:

Γ(T )∥ = 2γ2
nT [

1
T1⊥

− 1
2T1∥

]−1 K∥A∥
µBzn

(2.134)

where the experimental relation K∥(T ) = A∥χ∥(T )/NµB is utilized with A∥ = 0.91±0.06 kOe/µB . Part
(b) of Fig.2.15 shows the T dependence of Γ∥ thus estimated. Γ⊥ is difficult to evaluate since K⊥ is
almost zero. As seen in the figure, Γ∥ is nearly T independent with Γ∥ = (16.0 ± 1.0)K up to 8K and
increases gradually to 30 K.

This value of Γ∥ extracted from NMR is very close to that from neutron scattering: Γneutron
∥ =

(20 ± 3)K as deduced from the quasielastic spectrum at 1.4 K [56]. This may suggest that the spin
relaxation is governed by fluctuations of f electrons which are almost independent of wave vector.
However, as described in more detail in Chapter 3, intersite magnetic correlations become significant in
CeRu2Si2 at low temperatures. Thus it is likely that the T1T=constant law below 8 K does not originate
from the single-site Kondo effect but from heavy itinerant electrons.

neutron scattering

Experimentally, the magnetic neutron scattering spectra at low T consist of the quasi-elastic and several
inelastic spectra. From the former the magnetic relaxation rate Γ is extracted. On the other hand, the
inelastic part originates from transitions between the ground state multiplet and several excited CEF
multiplets of 4f shells. Thus one can extract the CEF level scheme by analyzing the spectra.

As a typical example, we present a systematic study of CeM2X2(M=Cu, Ag, Au, Ru, Ni; X=Si, Ge) by
means of magnetic neutron scattering experiments [56, 57, 58, 59]. These Ce-based ternary compounds
with ThCr2Si2 type structure involve systems with different ground states: CeNi2Ge2 is paramagnetic,
CeCu2Si2 is the first heavy-electron superconductor and CeCu2Ge2 is a heavy-electron antiferromag-
netic compound which, interestingly, undergoes a superconducting transition under an application of
high pressure. CeRu2Si2 and CeNi2Ge2 are characterized by heavy-electron effective masses, which
reveal neither a magnetic nor a superconducting phase transition. In CeRu2Si2, there occurs at low
temperatures a pseudo-metamagnetic transition at a critical magnetic field Hc = 80 kOe.

We first show the result in CeCu2Si2 [58]. The neutron scattering experiment has revealed that the
inelastic magnetic part of the spectrum consists of a well pronounced peak at h̄ω = 31.5 meV and, in
addition, a less pronounced peak at h̄ω = 12 meV. Both peaks are reasonably fitted by two Lorentzians
centered at E1 = h̄ω = kB(135±15)K and E2 = h̄ω = kB(360±20)K, respectively. These two transitions
are assigned to two CEF transitions from the ground state doublet, |0〉, to the excited doublets, |1〉 and
|2〉, expected for Ce3+ ions occupying the tetragonal sites. Thus the CEF parameters such as B0

2 , B0
4

and B4
4 are obtained by simultaneously fitting the splittings E1 and E2 and the ratio of the intensities.

As shown in Fig.2.16, we can find the CEF level scheme.
On the other hand, the width of the quasi-elastic spectrum Γ is a measure of the strength of the

hybridization or the exchange interaction between the f - and the conduction electrons. In rare earth
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Figure 2.16: Crystal electric field (CEF) level scheme of Ce3+ in tetragonal CeCu2Si2 determined by the
neutron scattering experiment [59].

compounds with a magnetically stable 4f configuration, one expects a Korringa behavior for the quasi-
elastic linewidth as demonstrated for TbPd3 (see Fig.2.13), namely Γ = αT where α is typically 10−3,
while the valence fluctuation compounds such as CePd3 and CeSn3 show an almost T independent Γ,
reaching typically to 20 ∼ 30 meV as represented by CePd3 in Fig.2.13.

In contrast to these, the relaxation rate in the Kondo regime exhibits a characteristic T -dependence
and probes the presence of a very low energy scale of 10 ∼ 30 K. Figure 2.17 shows the summary of
the magnetic relaxation rate Γ(T ) versus temperature for T ≥ TM , where TM is the magnetic ordering
temperature for a series of CeM2X2 compounds with the tetragonal structure. The upper part of Fig.2.17
shows Γ(T ) of the nonmagnetic CeRu2Si2 and CeNi2Ge2, and superconducting CeCu2Si2. Then the
presence of such a low energy scale is related to the huge linear term of the specific heat which amounts
to about 1 J/moleK2. Namely the system can be described by renormalized heavy quasi-particles at low
temperatures.

The lower part of Fig.2.17 indicates the results for magnetically ordered compounds with significantly
lower values of Γ. Most remarkably, except for CeRu2Ge2 and CeAu2Ge2 in which Γ(T ) follows the
Korringa behavior as observed for TbPd3, all other systems show a distinct deviation from a T linear
dependence. Instead Γ(T ) seems to follow roughly a square-root dependence of Γ = A

√
T as drawn by

the solid lines in Fig.2.17. These systems are regarded as heavy-electron antiferromagnets with heavy
quasi-particles where quasi-elastic Lorentzian intensities still survive even below TM .

In a cubic crystal such as Ce1−xLaxAl2 and CeB6, the CEF levels are split into a doublet and a quartet.
The ground state is the doublet Γ7 in Ce1−xLaxAl2 and the quartet Γ8 in CeB6. On the other hand,
in the tetragonal crystal CeCu2Si2, the CEF levels consist of three doublets as presented above. Hence,
these three crystals have CEF states different from one another. By approximating the inelastic neutron
scattering spectra to be of the Lorentzian form, the linewidths of quasi-elastic spectra in CeCu2Si2,
Ce1−xLaxAl2 and CeB6 are displayed in Fig.2.18. As seen in Fig.2.18, an NCA-type calculation with use
of the Coqblin-Schrieffer model reproduces the experiment fairly well, the results of which are indicated
by the solid lines[60]. In CeB6 with the larger CEF splitting, on the other hand, the relaxation rate is
closer to the linear behavior.

The T 1/2 like behavior of Γ seen in CeCu2Si2 and Ce0.7La0.3Al2 is due to combination of the CEF and
the Kondo effects. As we have shown in §2.1.5, the Kondo temperature is influenced by the presence of
CEF splittings. If the temperature T is higher than the overall splitting, the effective Kondo temperature
is increased to the value without the splitting. Thus the relaxation rate depends on T as if TK varies
when T is comparable to the CEF splittings. In the case of CeB6, the large CEF splitting (∼ 500 K)
does not produce this behavior.
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Figure 2.17: Temperature dependences of the quasi-elastic Lorentzian linewidth, Γ/2 in isostructural
compounds CeM2X2: (a) nonmagnetic CeNi2Ge2, CeRu2Si2, and superconducting CeCu2Si2; (b) anti-
ferromagnetic CeCu2Ge2, CeAg2Si2, CeAg2Ge2, CeAu2Ge2 and ferromagnetic CeRu2Ge2. Solid lines
represents fits using a square root dependence of Γ(T )[58].

Figure 2.18: Comparison between theoretical calculation (solid lines) and experimental data of Γ(T )/2
in tetragonal CeCu2Si2, cubic Ce0.7La0.3Al2 and CeB6 [60].
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2.4.3 Non-Fermi liquid behavior

In contrast to the 4f electron systems, the spatial extent of the 5f electron states in the uranium based
compounds is larger than that of the 4f electrons and the hybridization with the valence conduction
electrons is stronger. Then the valency of a U ion in a crystal can take either U3+(5f3), U4+(5f2) or
U5+(5f1). It was predicted that the interaction between the non-Kramers U4+ ion and the conduction
electrons leads to non-Fermi liquid behavior which is characterized by logarithmic or power-law diver-
gence of the physical quantities at low temperatures. The two channel Kondo effect (n = 2, S = 1/2)
discussed in 2.3 is invoked with screening channels induced by virtual transitions between the lowest
CEF doublet of the 5f2 configuration and an excited CEF doublet of the 5f1 configuration[41, 44].
A possible experimental signature for the non-Fermi liquid behavior was observed in dilute U system
UxTh1−xRu2Si2[61] and U1−xYxPd3 [62]. As shown in Fig.2.19, the magnetic susceptibility χimp(T )
due to U impurity follows the lnT dependence over two decades of temperature below 10 K. The reason
for this behavior is not yet understood. We describe some models proposed so far, although none of
them are completely successful.

In the two-channel screening model, the T−1 divergence of the paramagnetic susceptibility for the
non-Kramers doublet is marginally suppressed. The numerical solution predicted a simple logarithmic
function of the susceptibility with χ(T ) = a/TK ln (T/bTK) for T ≪ TK where constant a and b are given
as ∼ 0.05 and 2.2[63], respectively. The best fit to the experiment was obtained with TK=11.1 K. This
impurity model is convenient to explain the fact that χ(T ) is almost proportional to the U concentration.
However, the residual entropy, which should be released by application of magnetic field, has not been
observed.

Alternative explanations for the non-Fermi liquid behavior are provided based on distribution of Kondo
temperatures [64], and a spin-glass transition very near zero temperature [65].

Figure 2.19: Comparison between the U contribution χimp in U0.01Th0.99Ru2Si2 and numerical calcula-
tion based on the S=1/2 two-channel Kondo model (solid line). Parameters used for fitting are µ = 1.7µB

and TK=11.1 K [61, 63].

To conclude Chapter 2, we would say that the spin dynamics probed by NMR and neutron scattering
techniques can be semiquantitatively interpreted within such impurity models as the degenerate An-
derson and the Coqblin-Schrieffer models as long as high temperature behaviors are concerned. In the
following chapters, we shall see how the strong interaction effects among electrons lead to richer and
more fascinating behaviors at low temperatures.
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Chapter 3

Metallic and Insulating Phases of
Heavy Electrons

In the previous chapters, we have seen that magnetic and thermal properties of heavy electrons are
basically determined by strong local correlation. A signature of the local nature is that the susceptibility
and specific heat are roughly proportional to concentration of Ce in systems such as CexLa1−xCu6 or
CexLa1−xB6. The RKKY interaction is operative in bringing about magnetic ordering. The energy
scale of it is given by JRKKY ∼ J2ρc where J is the exchange interaction between f and conduction
electrons and ρc is the density of conduction band states per site. The RKKY interaction competes with
the Kondo effect which points to the non-magnetic singlet ground state. There exists a rather detailed
balance between these two tendencies. It is expected that the magnetic transition temperature TM , if it
exists, is lowered due to the Kondo effect. In the opposite case of TK ≫ J2ρc, no magnetic order should
occur.

Even in the singlet ground state, intersite interaction should influence residual interactions among
renormalized heavy quasi-particles. It is this residual interaction that leads to a rich variety in the
ground states such as heavy-electron superconductivity, heavy-electron band magnetism, etc. Short-
range magnetic correlation might survive even if the dominating Kondo effect prevents development of
long-range order. We have already seen in Fig.1.3 that electrical resistivity reveals growing importance
of coherence upon increasing concentration of rare-earth ions at low temperatures.

Direct evidence for heavy quasi-particles comes from the de Haas-van Alphen (dHvA) effect which is
the oscillation of the magnetic susceptibility coming from Landau quantization of the electron orbits [36].
Geometry of the Fermi surface can be obtained from the period of oscillation in the differential magnetic
susceptibility as a function of 1/H with H the magnetic field. The effective mass can be deduced from
temperature dependence of the oscillation amplitude. To observe these oscillations, the mean free path
l of a heavy quasi-particle must be larger than the cyclotron radius: l ≫ vF /ωH where vF is the Fermi
velocity, and ωH = eH/m∗c is the effective cyclotron frequency of a heavy quasi-particle with effective
mass m∗. Furthermore thermal smearing at the Fermi surface must be sufficiently small: T ≪ ωH .
With large effective masses and short mean free paths, these conditions require that experiment should
be performed at low temperature and in high field. Measurements of dHvA oscillations have been made
on UPt3 [1, 3], CeRu2Si2 [2, 3] and CeCu6[4]. In all these cases, heavy effective masses have been
observed.

For UPt3, the Fermi surface obtained by the dHvA effect is in good agreement with that obtained
from energy-band theory [5]. The effective mass on some sheets of the Fermi surface, however, is about
10 to 30 times larger than that deduced from band-structure calculations. This fact shows that there
are significant many body effects which are not described by the standard band theory.

In the present chapter, we shall review paramagnetic heavy-electron states which have both metallic
and insulating phases. The ordered states such as magnetic and superconducting phases will be discussed
in Chapters 4 and 5, respectively. In the following we focus on the growth of intersite coherence, or the
itinerant character of f electrons, mainly in dynamic magnetic properties. As specific examples to see
the subtle role of the intersite correlation in the heavy-electron state, we take typical systems CeCu6

and CeRu2Si2 where the Fermi-liquid remains stable at low temperatures even with significant magnetic
correlations. We then discuss UBe13 and UPt3 mainly in their paramagnetic phase to contrast with the

75



76 CHAPTER 3. METALLIC AND INSULATING PHASES OF HEAVY ELECTRONS

Ce systems.

3.1 Formation of Heavy-Electron Metals with Magnetic Corre-
lation

3.1.1 Metamagnetic behavior

CeRu2Si2 has electronic specific heat coefficient γ = 0.35 J/(mole K2), which is much smaller than 1.6
J/(mole K2) of CeCu6, and a little smaller than 0.4 J/(mole K2) of UPt3. A remarkable feature of
this compound is the pseudo-metamagnetic transition. This transition has been observed for a mag-
netic field Hc=8 T applied along the tetragonal c-axis in CeRu2Si2, as shown in Fig.3.1 [8]. Similar
pseudo-metamagnetic transition has also been reported for UPt3 at much higher fields of 20 T [18] A
metamagnetic behavior has also been observed in CeCu6 at 2 T. In this case the metamagnetism is faint
and is seen as a peak only in ∂2M/∂H2.

Figure 3.1: Magnetization curves for CeRu2Si2 up to 150 kOe at 4.2 and 1.35 K [8].

Decline of the heavy-electron state through Hc was found by the dHvA effect [10]. Effective masses
up to 120m0, which are observed below Hc, decrease significantly around Hc and continue to decrease
with increasing field. Then, it has been proposed that the system above Hc may be described in terms
of the localized f electron model [10]. A basis of the proposal is that the Fermi surfaces measured above
Hc is similar to those with localized f electrons calculated by the band theory [11]. On the other hand,
in dHvA experiment for UPt3 the behavior above the pseudo-metamagnetic transition does not suggest
localization of f electrons [3]. We note that if two 5f electrons per U4+ ion are localized, the size of the
Fermi surface can remain the same as that of itinerant 5f electrons. This aspect will be discussed in 3.3.

We mention that the metamagnetic behavior accompanies large elastic anomaly. The elastic constants
show pronounced softening near the critical magnetic field Hc [12] and the magnetostriction is also
anomalous [13]

3.1.2 NMR on CeCu6 and CeRu2Si2

Figure 3.2 shows the temperature dependence of the nuclear-spin-lattice-relaxation rate 1/T1 for CeCu6

and CeRu2Si2 [6]. In the latter case 1/T1⊥ of 29Si is measured under the condition that the c-axis is
aligned along the magnetic field. For CeCu6, 1/T1 of 63Cu was measured in zero field by Cu NQR.
As seen in the figure, 1/T1 is almost independent of temperature above 6 K for CeCu6 and 12 K for
CeRu2Si2. Then 1/T1 begins to decrease gradually above 50 K for CeRu2Si2. This relaxation behavior
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shares a common feature with other heavy-electron systems at high temperatures. As discussed in the
previous Chapter, spin correlation between different sites can be ignored at high temperatures, and 1/T1

is described by the local spin susceptibility χ(T ) and the magnetic relaxation rate Γ.
The temperature below which 1/T1 begins to depend on T is close to the Kondo temperature TK

which is extracted from analysis of the resistivity and the magnetic specific heat. With further decrease
of temperature, 1/T1 follows a behavior T1T=constant, which is called the Korringa law. To see this
clearly, Fig.3.3 shows (T1T )−1 vs T . It turns out that the Korringa law is valid below 0.2 K for CeCu6

and 8 K for CeRu2Si2. The characteristic temperature in each case is sometimes called the coherence
temperature T ∗. As discussed in Chapter 1, the Fermi liquid ground state leads to the Korringa law
at low T . This is independent of whether the system is homogeneous or a local Fermi liquid. In the
temperature range where the local Fermi liquid description is valid, the Korringa relation given by
eq.(1.140) should hold.

In contrast to the expectation based on the single-ion model of spin fluctuations, the ratio of T ∗/TK

is quite different in CeCu6 from that in CeRu2Si2; T ∗/TK=0.2/6 =0.03 for CeCu6 and 8/12=0.67 for
CeRu2Si2. Furthermore T ∗ decreases to 0.08 K in Ce0.75La0.25Cu6 [1]. These results show that the
energy scale TK is not sufficient to describe the heavy-electron systems. It should also be specified by
the coherence temperature, or the effective Fermi temperature, T ∗ below which heavy-electron bands are
formed. In contrast to the universal behavior of the Kondo impurity, the dispersion relations of heavy
quasi-particles depend on materials.

Decline of the heavy electron state with the increasing field was also probed by the T1 measurement
of Ru in the field range 0−15.5 T [14]. As shown in Fig.3.4(a), the behavior T1T=const is not observed
down to 1.6 K around Hc. This means that the effective Fermi temperature, T ∗ around Hc is much
lower than that at H < Hc; T ∗ ∼ 8 K. By contrast, as the field increases more than Hc, (T1T )−1 begins
to decrease as indicated in Fig.3.4(b). Then, the T1T=const behavior is observed only below ∼4 K at
15.5 T.

3.1.3 Neutron scattering on CeCu6 and CeRu2Si2

Neutron scattering can extract information on the single-site fluctuations and intersite magnetic correla-
tions separately by scanning the wave-number and energy. Inelastic neutron scattering experiments have
been performed on single crystals of CeRu2Si2 and CeCu6. At high temperatures, magnetic scattering
can be described by a single quasi-elastic Lorentzian peak corresponding to eq.(2.128). With decreasing
temperatures, antiferro and incommensurate magnetic correlations develop below 70 K in CeRu2Si2 and
10 K in CeCu6.

An inelastic scattering study with applied magnetic field has shown that the pseudo-metamagnetic
transition corresponds to the collapse of the incommensurate magnetic correlation. As shown in Fig.3.5
[7], magnetic scattering at incommensurate wave vector Q=(0.7, 0.7, 0) and energy transfer h̄ω = 1.6
meV decreases slightly for field up to H=70 kOe, but more rapidly at higher field. The inflection point
for a decrease of the neutron intensity corresponds to the threshold field Hc=83 kOe at 1.4 K in good
agreement with magnetization experiment (see Fig.3.1). At H=98 kOe, it is found that the magnetic
scattering does not exhibit any q-dependence, and the spectrum is quite similar to that observed at
Q=(0.9, 0.9, 0) which is in between the intensity maximum. The latter spectrum represents the single-
site contribution in zero field (see Fig.3.7). Namely, the single-site contribution of quasi-elastic type is
not affected by a magnetic field of 98 kOe which exceeds Hc of the pseudo-metamagnetic transition. On
the other hand the intersite contribution of inelastic-type is completely suppressed as seen clearly in the
energy scans in Fig.3.6.

A similar feature was also observed in CeCu6 at Hc=25 kOe, although only a small anomaly appears
in dM/dH [9]. This is probably because the weight of the intersite contribution relative to the single-
site contribution is much smaller in CeCu6 than in CeRu2Si2. In both cases the Zeeman energy µBHc

corresponding to the critical field Hc is of the order of h̄ω0 which is the peak energy of the inelastic
neutron scattering spectrum. The finite energy h̄ω0 suggests the presence of a pseudo gap in the magnetic
excitation spectrum. In this case the correlation length naturally saturates when the temperature or the
Zeeman energy becomes of the order of the pseudo gap.

Figure 3.7 shows typical q-scan spectra for CeRu2Si2 obtained at 4.2 K with an energy transfer h̄ω=1.6
meV [7]. In this subsection we take the unit of the wave number as π/ℓ with ℓ the lattice constant along
each principal direction. The peak of intensity at incommensurate wave vectors k1 = (0.3, 0, 0) and
k2 = (0.3, 0.3, 0) indicates the presence of competing in-plane couplings between first and second nearest
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Figure 3.2: Temperature dependence of (1/T1) of 63Cu in CeCu6(×) and 29Si in CeRu2Si2(•) [6].

Figure 3.3: Temperature dependence of 1/(T1T ) of 63Cu in CeCu6(•) and CeCu2Si2(⃝) and 29Si in
CeRu2Si2(×) [6].
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Figure 3.4: Temperature dependence of (T1T )−1 of Ru in CeRu2Si2 at various fields H: (a) H ≤ HM =
7.8 T; (b) H ≥ HM [14].

Figure 3.5: Scattered neutron intensities at 1.4 K as a function of magnetic field applied along [001]
direction for CeRu2Si2; they correspond to the peak maximum at Q = (0.7, 0.7, 0) with h̄ω=1.6 meV,
intensity in between the peaks at Q=(0.9, 0.9, 0) with h̄ω=1.6 meV, and the background intensity at
Q=(0.7, 0.7, 0) with h̄ω = − 2 meV [7].
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Figure 3.6: Typical fits of energy scans at Q=(0.7, 0.7, 0) and T=1.4 K showing the quasi-elastic
contribution (H= 98 kOe) and the intersite inelastic contribution (H=0) for CeRu2Si2 [7].

Figure 3.7: q scans at a finite energy transfer h̄ω = 1.6 meV along the directions [110] and [010] at
T=4.2 K for CeRu2Si2, showing the two incommensurate wave vectors k1=(0.3,0,0) and k2=(0.3,0.3,0)
[7].
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neighbors. In addition, there is a significant q independent contribution. In these two compounds,
both the single-site and the intersite magnetic correlations seem to coexist at low temperatures. The
former contribution represents about 60 % for CeRu2Si2 and 90 % for CeCu6 of the weight of the signal
integrated over the whole q-space. As shown in Fig.3.8 for CeCu6, the magnetic scattering becomes
independent of T below T ∗. This indicates saturation of the in-plane correlation length. From the energy

Figure 3.8: Magnetic correlation lengths along the a- and c-directions as a function of temperature for
CeCu6 [7].

scans performed for various scattering vectors Q, the single- and inter-site contributions are analyzed
separately. The single-site contribution can be described by a quasi-elastic Lorentzian, the width Γs−s

of which is 2.0 meV for CeRu2Si2 and 0.42 meV for CeCu6. These values lead to the Kondo temperature
TK=23 K for CeRu2Si2 and 5 K for CeCu6. The magnitudes of TK so determined are compatible with
those determined by the coefficient γ of the linear specific heat. For γTK both compounds possess
comparable values γTK ∼ 8000mJ/(mole K). This fact suggests that single-site fluctuations give the
main contribution to γ. On the other hand, intersite magnetic fluctuations give rise to a broad inelastic
spectrum centered at h̄ω0 = 1.2 meV with width Γi−s = 0.9 meV for CeRu2Si2, and at 0.2 meV with
width 0.21 meV for CeCu6. Apparently, there exist two energy scales Γs−s and Γi−s in the non-magnetic
heavy-electron state. Of these, Γs−s is related to single-site fluctuation with the energy scale comparable
to TK , and h̄ω0 ∼ Γi−s reflects the intersite interaction. Without the intersite interaction h̄ω0 should
tend to zero.

Fig.3.9 represents the temperature dependence of the line width Γs−s and Γi−s for CeCu6. Together
with the result of the correlation length shown in Fig.3.8, three regimes are identified:

1. The low-temperature regime T < Tl where Tl is 1 − 1.5 K for CeCu6 and 5 − 6 K for CeRu2Si2.
The correlation length and the line-widths are independent of T , with the former being about
the distance of second nearest neighbors. The magnitude of Tl in CeCu6 is much larger than the
coherent temperature T ∗ ∼ 0.2 K which is deduced from the temperature dependence of 1/T1. On
the other hand Tl in CeRu2Si2 is comparable to T ∗ ∼ 6 K determined by the NMR.

2. The intermediate regime with Tl < T < Tm where Tm=3 K for CeCu6 and 10 ∼ 15 K for CeRu2Si2.
The correlation lengths decrease with T and the line-width Γi−s of the intersite contribution
increases rapidly with T . As a result we have Γi−s ≅ Γs−s above Tm. The Fermi liquid description
breaks down in this temperature range.

3. The high-temperature regime T > Tm where the intersite magnetic correlations collapse and the
single-site fluctuations prevail. The system in this range looks very similar to the dilute Kondo
system.
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Figure 3.9: Temperature dependence of the line-widths, deduced from energy scans for the single-site
(Γs−s) and the inter-site (Γi−s) contributions for CeCu6 [7].

3.1.4 UBe13 and UPt3

UBe13, which undergoes superconducting transition at Tc = 0.9 K, takes a cubic crystal structure with 8
formula units per unit cell. The U-U distance equals 5.13 Åwhich is much too large for direct overlap of
5f wave functions from adjacent U atoms. Macroscopic physical properties of UBe13 are quite unusual.
Figure 3.10 shows [15] the electrical resistivity together with that of other systems, scaled to the same
value at room temperature, and specific heat. The resistivity increases with decreasing temperature
from room temperature down to 2.4 K where a well-defined peak appears. The resistivity just above
Tc is larger than 100µΩ·cm. The magnetic susceptibility χ at high temperature is large and obeys the
Curie-Weiss law with µeff= 3.1 µB . With decreasing T , χ tends to a large value. The specific heat
coefficient γ increases upon cooling below 10 K, as shown in Fig.3.10(b). It is only below ∼ 1. 5 K that
T1T becomes almost constant [17]. The large anomaly of specific heat at Tc indicates that the Cooper
pairs consist of heavy electrons. We discuss anomalous superconducting properties of UBe13 in Chapter
5.

Properties of UPt3 are in contrast with those of UBe13 in a number of ways. The crystal has the
hexagonal structure with the U-U distance 4.1 Å. The electrical resistivity is large (∼ 100µΩ) at room
temperature, but decreases upon cooling as in ordinary metals. At high temperature, the Curie-Weiss
law with µeff = 2.6µB is observed with large anisotropy in χ. Namely with H in the basal plane, χ at
low temperatures is twice of that with H along the c axis. Although there is a peak in χ at 14 K, no
specific heat anomaly is observed.

At temperatures lower than 14 K, neutron scattering probed unusual magnetic correlations. There
are three different modes of the magnetic correlations with the propagation vectors Q=(0.5, 0, 1), (0, 0,
0), and (0, 0, 1) in units of the primitive reciprocal lattice vectors. The (0,0,1) mode begins to develop
below ∼ 14 K [19], and is observed at high-energy transfer more than 5 meV. The mode has an out-of-
plane antiferromagnetic polarization. At low energy there is another (0,0,0) mode which is interpreted
in terms of paramagnons, or particle-hole excitations of heavy quasi-particles [20]. This ”slow” quasi-
particle component of the spin relaxation process is similar to what has been identified in other systems
such as liquid 3He [21], paramagnetic 3dtransition metals with strongly enhanced susceptibilities and
weak ferromagnetic 3dmetals with small spin polarizations. These behaviors in the normal state are
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Figure 3.10: (a) The resistivity versus temperature for UBe13 together with that of other compounds.
Note that resistivities at room temperature have been normalized to the same value as that of UBe13

[15]. (b) The specific heat Cp of UBe13 divided by temperature in the normal state [16]. The inset shows
the specific heat near the transition temperature Tc of superconductivity.

consistent with the itinerant model of f electrons. In UPt3, however, there is also a “fast” contribution
with a weakly q-dependent characteristic frequency. The “slow” component in Im χ(q, ω) accounts
for about 20% of the total static susceptibility [20] according to the Kramers-Kronig relation. This
contrasts with the result in 3d transition metals where a well defined quasi-particle contribution to Im
χ(q, ω) accounts for the total static susceptibility in the limit q → 0. This difference between UPt3 and
3d systems may be ascribed in part to larger strength of the spin-orbit interaction as well as stronger
tendency to localization in 5f systems. The paramagnon mode may mediate the triplet pairing in UPt3
as discussed in Chapter 5.

We turn to unusual behavior of antiferromagnetism at Q = (0.5, 0, 1). It was reported by means of
neutron scattering [22] that UPt3 has antiferromagnetic order below 5 K. However the spin correlation
length remains finite with 85 ∼ 500 Ådown to 100 mK. No trace of the magnetic transition was reported
in the specific heat [23], the static susceptibility [24], and the Knight shift [25] down to 100 mK. With
further decreasing temperature, however, neutron scattering [26] and specific heat [27] measurements
suggest onset of the long-range order below 20 mK. If this is true, the “quasi-ordering” below 5 K is
characterized by a time scale much larger than that of neutrons (typically 10−12s), but much shorter than
that detected by NMR (typically 10−6 ∼ 10−8s). What is unusual is the spin correlation length of about
300 Åwhich is much longer than that in typical magnetic systems above the magnetic transition. Origin
of these unconventional magnetic correlations is not understood yet. Relationship of the quasi-ordering
to superconductivity is discussed in Chapter 5.

3.2 Semiconducting and Semimetallic Phases of Heavy Elec-
trons

3.2.1 SmB6

There is a class of materials called Kondo semiconductors which are characterized by a small energy
gap in the electronic excitation spectrum at low temperatures. In SmB6 and YbB12, the energy gap
amounts to 50-100 K as identified by the exponential increase of the resistivity and T1, or by optical mea-
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surements. In contrast with usual semiconductors, the magnetic response of the Kondo semiconductors
shows unexpected complexity. A typical example is SmB6 which is a mixed-valence or valence fluctuating
compound with average valency of Sm+2.56. In this system, it is established that the two configurations,
|4f6〉 and |4f55d〉 of Sm are mixed in the ground state as a result of hybridization. Figure 3.11 shows a
set of magnetic neutron scattering spectra obtained at 1.8 K. The Q-vectors point to different directions
with respect to the crystal axes, but have the same magnitude |Q| = 1.5Å−1 [28].

Figure 3.11: Low temperature (T=1.8 K) energy spectra of SmB6 for three different Q values having
identical |Q|=1.5 Å−1 [28].

A sharp peak appears in the spectrum at h̄ω=14 meV and Q=(0.5, 0.55, 0.5) in units of the primary
reciprocal lattice vectors. In the bottom of Fig.3.12, the scattering intensities are plotted for different
Q (open circles in the inset). There is a substantial anisotropy that the form factor F (Q) is large
along the Q=(1, 1, 1) direction, whereas it is markedly reduced along Q=(0, 1, 1) and vanishes along
Q=(1, 0, 0). Furthermore, the intensity is unexpectedly reduced with increasing |Q| along the direction
Q = (0.5, q, q), which is incompatible with any plausible Sm2+ form factor as indicated by dash-dot line
in the upper part of Fig.3.12. These features of the magnetic excitation at h̄ω=14 meV were ascribed
to the 4f55d component of the mixed-valence state.

An excitonic bound state has been invoked to explain the spectrum [28]. According to this model,
electrons in the 4f orbital are strongly coupled with holes in the six 5d orbitals of the neighboring Sm
sites. Then the ground state has bound states analogous to excitons. The inelastic feature observed at
low T corresponds to breakup of excitons. As shown in Fig.3.13, the inelastic intensity rapidly falls off
in a temperature range of around 20-40 K, which is comparable to the electronic gap ∆. This decrease
may indicate that the excitonic bound state becomes unstable by thermal population of itinerant d-band
states.

3.2.2 CeNiSn and CeRhSb

CeNiSn and CeRhSb crystallize in the orthorhombic ϵ-TiNiSi type structure, and have a very small
pseudo energy gap of a few Kelvin. The magnetic susceptibility, the resistivity and the thermoelectric
power have peaks around Tcoh ∼ 12-20 K. These peaks are ascribed to the formation of heavy-electron
state and simultaneous development of antiferromagnetic correlations. The transport properties are not
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Figure 3.12: Radial (upper part) and angular (lower part) variations of magnetic scattering intensity
associated with the peak at h̄ω2 ≅ 14 meV in SmB6; inset shows trajectories within (011) scattering
plane corresponding to these plots [28].

Figure 3.13: Temperature dependence of neutron intensity and line-width of the magnetic peak at h̄ω2 ≅
14 meV in SmB6 [28].
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like a semiconductor, but metallic along all crystal directions [29]. From the temperature dependence of
1/T1 of 118Sn and 123Sb in CeNiSn and CeRhSb, the presence of a pseudo energy gap is suggested in the
spin excitation spectrum. However the density of states at the Fermi level is finite as shown in Fig.3.14.
The T dependence of 1/T1 is well reproduced by the effective density of states Neff (E) modeled with a
V-shaped structure [30]. for the quasi-particle bands as illustrated in the inset of Fig.3.14. The presence
of the tiny density of states at the Fermi level is consistent with a semimetal with very low carrier density.
In comparison with the isotropic gap in SmB6, the pseudo energy gap with a few Kelvin seems to be
anisotropic as judged from the temperature dependence of the resistivity. These correlated semimetals
exhibit interesting behavior that the pseudo gap of the charge response is larger than that of the spin
response.

Figure 3.14: Temperature dependence of 1/T1 for 119Sn in CeNiSn and 123Sb in CeRhSb. Inset illustrates
the effective density of states Neff (E) modeled with a V-shaped structure with a finite value near the
Fermi level [30].

From the next section, we turn to theoretical consideration how to understand the metallic and insu-
lating characteristics of heavy electrons.

3.3 Momentum Distribution and the Fermi Surface

However strong the correlation effect, there is a one-to-one correspondence between a quasi-particle
state and a noninteracting counterpart provided that the Fermi liquid is realized. If a single-particle
state in the free system is occupied, the corresponding quasi-particle state is also occupied. From this
it follows that the Fermi surface of quasi-particles encloses the same volume (Fermi volume) in the
Brillouin zone as that of free electrons. This property is often referred to as the Luttinger sum rule. We
sketch a mathematical proof of the sum rule in Appendix G. In this section we show that the momentum
distribution of bare electrons in strongly correlated metals is much different from that of quasi-particles.
The global distribution is rather similar to the case of localized electrons. This feature of heavy electrons
is important in understanding consistency between various experiments with different energy resolutions.

Let us first consider a trivial case where the system consists of monovalent atoms with a single atom
in the unit cell of the lattice. The Fermi volume is half the volume of the Brillouin zone in an ordinary
metal. We ask what happens in the case of heavy electrons. If f electrons participate in forming
the quasi-particles, the Fermi volume is determined by the total number of electrons including the f
electrons. If f electrons are localized, on the contrary, only the conduction electrons contribute to the
Fermi volume. Thus information on the size of the Fermi surface gives an important hint on the nature
of heavy electrons.
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The standard model for investigating heavy electrons is the Anderson lattice. The model is character-
ized by a periodic arrangement of f electron sites and is given by

HAL =
∑
kσ

[
ϵkc†kσ

ckσ + Vk(c†kσ
fkσ + f†

kσ
ckσ)

]
+

∑
i

[
ϵf

∑
σ

f†
iσfiσ + Uf†

i↑f
†
i↓fi↓fi↑

]
(3.1)

where fkσ
is the annihilation operator of an f electron with momentum k and spin σ, and fiσ is the one

localized at site i. In the trivial case with U = 0, the model can be solved easily and gives two hybridized
bands. If the total number Ne of electrons is twice the number NL of lattice sites, the system becomes
an insulator since each k state can accommodate two electrons with up and down spins. Otherwise the
Fermi level is somewhere inside the band, and the system becomes metallic. If perturbation theory with
respect to U is valid, the area of the Fermi surface must remain the same as U increases. This adiabatic
continuity of the states with respect to U is precisely the condition for the validity of the Fermi liquid
theory.

In order to clarify the peculiarity of the momentum distribution in heavy-electron systems, we first
consider a one-dimensional system and assume the presence of large Coulomb repulsion U . Precisely
speaking, the Fermi liquid is unstable in one dimension against formation of the Tomonaga-Luttinger
liquid state [31, 32]. We neglect this aspect here because we are interested mainly in the size of the Fermi
surface, the location of which is common to that in the Tomonaga-Luttinger liquid. Let us assume for
definiteness a particular case where the total number Ne of electrons is 7/4 times the number NL of lattice
sites. If the f electrons are itinerant, the Fermi momentum is 7π/(8a), and the lower hybridized band
is partially occupied. Here a is the lattice constant. The upper hybridized band is empty. On the other
hand, if there is no hybridization nor magnetic ordering in the f electrons, the number of f electrons
per site is unity. Then the momentum distributions nc

k, nf
k for conduction and f electrons, respectively,

become like the ones shown by the dashed line in Fig.3.15. The Fermi surface of conduction electrons is

nkf
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Figure 3.15: Schematic view of the momentum distributions of (a) c electrons, and (b) f electrons.

at k = 3π/(8a) without hybridization. The number Nc of conduction electrons is equal to 3NL/4. With
large U and small hybridization, the momentum distribution becomes like the one schematically shown
by the solid line in Fig.3.15. Globally the distribution is not very different from the case of localized f
electrons. But the location of the Fermi momentum is the same as the case with U = 0. We note that
the k-dependence of the f electron distribution means the presence of charge fluctuations. To see this
we note that in the case of a pair of Kondo impurities the momentum dependence corresponds to the
even-odd splitting of molecular orbitals.
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We give a simple example of a variational wave function for the itinerant case. Namely we consider
ΨB given by [33]

ΨB = P
∏
kσ

(1 + αkf†
kσckσ)φNe

= P exp

(∑
kσ

αkf†
kσckσ

)
φNe

, (3.2)

where φNe represents the wave function of Ne conduction electrons and vacant f orbitals. The operator
P is a projection operator to exclude double occupation of f electrons at any site, and is often called the
Gutzwiller projection. The variational parameter αk should be optimized so as to minimize the energy.
In the case of large U , numerical integration with use of Monte Carlo sampling [34] yields a momentum
distribution similar to the solid line in Fig.3.15. If αk is large compared with unity, each site has almost
one f electron. Then the discontinuity in nf

k at the Fermi surface becomes small, but the location remains
the same. In the case of Ne/NL = 7/4, the location of the Fermi surface is at k = 7π/(8a) which is
called “the large Fermi surface”. Here Ne determines the location. We note that a significant but
smooth change of nk

c appears at the position of “the small Fermi surface”, which is determined only by
Nc, as shown in Fig.3.15(a). The smooth change in nc

k takes advantage of hybridization. A very simple
description of quasi-particles with the large Fermi surface is provided by a mean-field theory. This is
sometimes called the renormalized band picture [35] which contains a parameter to describe reduction
of hybridization and another to describe the shift in the f electron level. The parameters are optimized
by the same procedure as in the case of the impurity Anderson model.

In the particular case where Ne = 2NL, ΨB corresponds to a state where the electrons fill completely
the lower hybridized band. In this case the Fermi surface is absent and the system becomes an insulator
at absolute zero. This state goes continuously to the usual band insulator as U decreases. In the opposite
case of large U , however, the magnetic and dielectric properties of the system reflect the effect of strong
correlation. This should be evident if one considers the high temperature regime where the localized
picture becomes better than the band picture. The system in the large U limit is called the Kondo
insulator.

Let us come back to the metallic case with U and |ϵf | large as compared with V 2ρc. Then the ground
state has almost unit occupation of f electrons at each site. The effective model excluding the empty
and doubly occupied f sites is given by

HKL =
∑
kσ

ϵkc†kσ
ckσ + J

∑
i

Si · si, (3.3)

where Si is the spin operator of f electrons, and si of conduction electrons at site i. The latter is given
by

si =
1

2N

∑
kp

∑
αβ

c†kα
σαβcpβ exp[−i(k − p) · Ri]. (3.4)

The model (3.3) is referred to as the Kondo lattice. Various numerical results show that the location of
the Fermi surface in the Kondo lattice is the same as the Anderson lattice with the same number of total
electrons [42]. Thus the electronic state is continuously connected even though the charge fluctuations
of f electrons become infinitesimal. This situation is analogous to the single-impurity case where the
Kondo model without the charge fluctuation has the same fixed point as the Anderson model with U = 0
[38].

One might check possibility of the small Fermi surface for the Kondo lattice. With Nc/NL = 3/4,
for example, can the discontinuity in nk

c occur at k = 3π/(8a) in a paramagnetic ground state? Such
ground state should be realized if the f electrons were completely decoupled from conduction electrons,
and would form a spin chain in the presence of additional intersite exchange interaction. Provided that
hybridization or the Kondo exchange between f and conduction electrons acts as irrelevant perturbation
to this decoupled state, the perturbed ground state would still have the small Fermi surface. Such ground
state is often called the doped spin liquid. This name emphasizes the difference from the Fermi liquid
with a large Fermi surface. An exact analysis [39] suggests that the doped spin liquid is unlikely to be
realized in one dimension; the density fluctuation has zero excitation energy at the wave number q = 2kF ,
where kF is the large Fermi surface including localized f electrons. This result is naturally interpreted
in terms of the particle-hole excitation across the large Fermi surface, but is hard to be reconciled with
the small Fermi surface. Realization of the doped spin liquid in three dimensions is even more unlikely;
in higher dimensions with a large number of neighbors the localized f electrons favors a magnetically
ordered ground state rather than a singlet liquid.
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So far we have assumed that there is at most one f electron per site. In the case of two f electrons
per site as in U4+, we encounter different situation concerning the size of the Fermi surface. Namely,
the size can be the same independent of whether the f electrons are itinerant or localized since the f
electrons in total can fill an energy band completely. This raises an interesting question how one can
distinguish between the itinerant and localized states for a system with an f2 configuration [40]. It
cannot be excluded that a band singlet state changes continuously into a localized state with the CEF
singlet at each site as parameters of the system are varied [41]. The difference in the dHvA behavior,
as discussed in 3.1.1, between UPt3 and CeRu2Si2 after the pseudo-metamagnetic transition might be
related to different numbers of f electrons per site.

At finite T , the discontinuity in the momentum distribution is absent. Therefore one needs a criterion
other than the momentum distribution to distinguish the itinerant and localized states. There are a
few experimental methods to measure the Fermi surface. The most popular is the dHvA effect. A
characteristic property in some heavy electron systems is that the Fermi surface changes rapidly at a
particular value of magnetic field as discussed in 3.1.1. This change, though rapid, seems to be smooth
even at the lowest accessible temperature [37]. On the other hand, particular care is required if one tries
to measure the Fermi surface with limited resolution, say in photoemission. The large (but smooth)
change of nc

k at k = 3π/(8a) in Fig.3.15 might easily be mistaken for the Fermi surface.
In order to treat the correlation effects more quantitatively than presented above, an effective medium

theory turns out to be useful, and will be explained below.

3.4 Dynamic Effective Field Theory

As we have seen in Chapter 2, perturbation theory from the limit of infinite degeneracy is very successful
in dealing with the Kondo effect. In order to deal with the lattice of Kondo centers, which makes up the
heavy-electron state, we also pursue a simplifying limit which makes the problem tractable. The proper
limit in this case is the infinite spatial dimension d. The limit makes a kind of effective medium theory
exact. This effective medium is not static as in the conventional mean-field theory, but dynamic. The
dynamics is to be determined self-consistently [43]. Before considering the dynamic effective field theory
for heavy electrons, we take the Ising model to clarify the basic idea of the effective field.

Since the following involve a little advanced mathematics, those who are interested mostly in explicit
results for heavy electrons are advised to go straight to 3.6.

3.4.1 Effective field in the Ising model

In the system of Ising spins, it has long been known that one can regard the reciprocal number of
neighboring spins as the expansion parameter [46]. In the case of the nearest-neighbor interaction, the
number of neighboring spins increases as the dimensions of the system increase. Then the mean-field
theory with use of the Weiss molecular field corresponds to the lowest-order theory, which becomes exact
in infinite dimensions. In the next order, one partly includes the fluctuation of the mean field. This level
of the theory is called the spherical model [46].

The ferromagnetic Ising model under a magnetic field h in the z direction can be written as

H = −J
∑
〈ij〉

σiσj − h
∑

i

σi, (3.5)

where 〈ij〉 are the nearest neighbor sites, J > 0, and the variable σi takes ±1. The unit of the magnetic
field is taken so that h has the dimension of energy. The molecular field hW at a site i is defined by

hW = J
∑

j∈n(i)

〈σj〉 = Jznm (3.6)

where n(i) denote the set of nearest neighbor sites of which number is zn, and 〈σj〉 = m is the average
of σj to be determined later. In the d-dimensional hypercubic lattice one has zn = 2d. The Hamiltonian
is rewritten as

H = −(hW + h)
∑

i

σi − J
∑
〈ij〉

(σi − m)(σj − m) +
N

2
Jznm2 ≡ H0 + H1 +

N

2
Jznm2, (3.7)
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where N is the total number of lattice sites. The term H0 gives the mean-field Hamiltonian, and H1

accounts for contribution of fluctuations. If we neglect H1, the spins under the effective field hW + h
become independent of each other. Then we can easily calculate the magnetization as

m = tanh[β(hW + h)], (3.8)

with β = 1/T . Together with eq.(3.6), hW is determined self-consistently. The susceptibility χ = ∂m/∂h
in the mean-field approximation (MFA) is calculated as

χMFA =
χ0

1 − Jznχ0
, (3.9)

in the limit of hW +h → 0. Here χ0 = β is the susceptibility of an isolated spin. The χMFA is divergent
at the Curie temperature Tc = Jzn.

Let us now evaluate the importance of H1 as the perturbation Hamiltonian. The average of H1

vanishes by the definition of m. Hence the lowest-order contribution to the free energy becomes

−β

2
〈H2

1 〉 = − 1
4zn

Nβ(Jzn)2〈(σj − m)2〉2. (3.10)

From eq.(3.8) we obtain
〈(σj − m)2〉2 = cosh−4[β(hW + h)]. (3.11)

As zn gets larger with Tc kept constant, the fluctuation contribution has the extra small factor 1/zn.
Even in the case of h = 0 at T = Tc where the fluctuation reaches a maximum, the contribution
is O(NTc/zn). This is smaller than the mean-field contribution by 1/zn. Higher order contributions
have higher powers of 1/zn. Hence in the limit of large dimensions one can neglect deviation from the
mean-field theory for all temperatures.

In the realistic case of finite d, however, the mean-field theory is only approximate. The most serious
drawback is the excess counting of the exchange field. Namely a part of the mean field felt by a spin at
certain site originates from this spin itself. A correction of it in dielectric media has led to the Clausius-
Mossotti formula for the susceptibility. The correction includes the concept of the reaction field of
Onsager[46]. We now derive the O(1/zn) correction to the susceptibility. For simplicity we consider only
the paramagnetic phase with m = h = 0. In order to identify the O(1/zn) correction, it is convenient to
introduce spinless fermion operators f†

i and fi at site i by

σi = 2f†
i fi − 1. (3.12)

The spin susceptibility in the mean-field theory corresponds to the RPA for the charge susceptibility
of fermions. Some lower order corrections to the elementary bubble are shown in Fig.3.16. The set of
diagrams corresponds to the irreducible susceptibility χ1, which cannot be separated into two pieces by
cutting a line representing the exchange interaction. The exact susceptibility is given by the same form

( a ) + ⋅ ⋅ ⋅ ⋅+

( b ) ⋅ ⋅ ⋅ ⋅+

Figure 3.16: Examples of corrections to the bubble: (a) O(1/zn) corrections, (b) O(1/z2
n) corrections.

as eq.(3.9) provided the irreducible susceptibility χ1 is used in place of χ0. It is important to notice
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that the vertex part in the lowest-order is diagonal in site indices. Thus to O(1/zn) we can regard χ1 as
site-diagonal. The fermion representation is in fact used only to show this property.

We parametrize χ1 as
χ−1

1 = χ−1
0 + λ, (3.13)

where λ represents the local-field correction. The k-dependent susceptibility χ(k) is given by

χ(k)−1 = χ−1
1 − J(k), (3.14)

where J(k) = J
∑

δ cos(k · δ) is the Fourier transform of the exchange interaction with δ pointing to
each nearest-neighbor. Let us now consider the local susceptibility which is given by the k-average of
χ(k). The very special feature of the Ising model is that each spin is a conserved quantity independent
of the exchange interaction. Then the local susceptibility is simply given by β〈σ2

i 〉 = β which is the same
as χ0. Then we obtain

1 = Avk
1

1 − (Jk − λ)β
, (3.15)

which determines λ at each temperature. Equation (3.15) is known as the spherical model condition
[46]. With this condition the right-hand side of eq.(3.15) without Avk gives χ(k)/β. We remark the
similarity of the susceptibility given by eq.(3.14) to eq.(1.107) of the mode-coupling theory of itinerant
magnetism. However the different definitions of λ in these two cases should be noted. The reaction field
included in the 1/zn correction can also be interpreted as a mode-coupling effect.

3.4.2 Dynamic effective field for fermions

One can naturally ask whether it is possible to set up a mean field for itinerant electrons so that the
theory becomes exact at d = ∞. Provided such a mean field is found, the problem is reduced to solving
an effective single-site problem under the mean field, together with determining the mean field self-
consistently. Obviously the mean field introduced in the Hartree-Fock approximation is inappropriate in
this case because the number operator for each spin experiences large fluctuations.

As a preliminary to set up the mean field, we derive an important bound for the thermal Green
function gk[τ ] = −〈Tτ ckσ

(τ)c†
kσ

(0)〉0 for noninteracting electrons. Let the single-particle energy ϵk be
measured from the Fermi level. By definition we have

gk[τ ] =
{

−[1 − f(ϵk)] exp(−ϵkτ), (τ > 0)
f(ϵk) exp(−ϵkτ), (τ < 0). (3.16)

Combining both signs of τ we obtain the bound [47]

|gk[τ ]| ≤ 1
2

exp(β|ϵk|/2) cosh−1(β|ϵk|/2) ≤ 1. (3.17)

Therefore the site representation gij [τ ] = −〈Tτ ciσ(τ)c†jσ(0)〉0 of the Green function satisfies the inequal-
ity ∑

j

|gij [τ ]|2 =
1
N

∑
k

|gk[τ ]|2 ≤ 1. (3.18)

We note that the number of lattice sites N is equal to the number of wave numbers k inside the Brillouin
zone. If the number of equivalent sites from a site i is zn, the inequality leads to the upper bound
for the off-diagonal element as gij [τ ] = O(1/

√
zn). On the other hand, the diagonal element gii[τ ] is of

order unity. One can prove the same inequality for the exact Green function Gij [τ ] by using the spectral
representation. Hence at d = ∞, one can neglect the off-diagonal element Gij [τ ] = −〈Tτ ciσ(τ)c†jσ(0)〉 in
comparison with the diagonal one. One should notice that the inequality is valid for all temperatures,
and is independent of the choice of the energy scale.

Arbitrary Feynman diagram for the self-energy Σ[τ ] has its skeleton consisting of U and Gij [τ ′]. We
can now see that dominant contribution comes from Gii[τ ′] at d = ∞. Thus Σ[τ ] does not depend on
k [48]. This local property of the self-energy is in common with the result of the Coherent Potential
Approximation (CPA) for disordered systems without mutual interactions [49, 51]. The CPA becomes
indeed exact in infinite dimensions, and the Fourier transform of Σ[τ ] to the frequency space is called the
coherent potential, which is a kind of mean field. In interacting many-body systems it is convenient to
introduce the self-energy, or a related quantity λ(z), as the dynamic mean field as we shall now explain.



92 CHAPTER 3. METALLIC AND INSULATING PHASES OF HEAVY ELECTRONS

Falicov-Kimball model

We explain the concept of the dynamic effective field first by taking the Falicov-Kimball model [57].
Because of the simplicity of the model, the self-consistent solution can be derived analytically. The
model is given by

HFK = −
∑
ij

tijc
†
i cj +

∑
i

ϵff†
i fi + U

∑
i

f†
i fic

†
i ci, (3.19)

It is equivalent to the special case of the Hubbard model where the down-spin electrons have zero transfer
and are regarded as spinless f electrons. We first derive intuitively the equation to determine the effective
field. Let us look at a site i = 0 and remove for the moment the Coulomb repulsion U only at the site.
The on-site Green function in this fictitious system H̃ is written as D̃[τ ] = −〈Tτ c0σ(τ)c†0σ(0)〉0. The
Fourier transform D̃(z) is given by D̃(z)−1 = z − λ(z) where λ(z) accounts for the hopping motion to
and from the other sites. The actual Green function D(z) of HFK should incorporate the effect of U at
the site in the form of the self-energy Σ(z). Then we obtain the relation

D(z)−1 = z − λ(z) − Σ(z). (3.20)

On the other hand, D(z) is also regarded as the site-diagonal element of the Green function Gij(z) with
full inclusion of U at each site. In other words D(z) is given by the momentum average of the Green
function G(k, z) = [z − ϵk − Σ(z)]−1. Namely

D(z) = Avk
1

z − ϵk − Σ(z)
= D0(z − Σ(z)), (3.21)

where D0(z) is the Green function with U = 0 at all sites. Note that the appearance of D0(z) is due
to the momentum independence of the self-energy. This relation to D0(z) simplifies the calculation
enormously. Figure 3.17 shows schematically the concept of the effective impurity.

(a) (b) (c)

λ(z) λ(z)+Σ(z)
≅

Figure 3.17: Illustration of an effective impurity and the dynamic effective field. In (b) the interaction
with other sites is represented by λ(z), and in (c) the Coulomb interaction at the impurity site is further
represented by Σ(z).

In this way we have obtained two independent relations eqs.(3.20) and (3.21) for each z among the un-
knowns D(z), λ(z),Σ(z). This relations match the effective field and the intersite interaction. If one can
solve the effective single impurity problem and can establish another relation between D(z), λ(z),Σ(z),
then the Green function G(k, z) can be derived explicitly.

The Falicov-Kimball model has the special feature that the f electron occupation number nf is a
constant at each site. Because of this, one can solve the effective impurity problem exactly. Namely
D(z) is given by

D(z) =
1 − nf

z − λ(z)
+

nf

z − λ(z) − U
, (3.22)

The Green function for the Falicov-Kimball model is thus derived with use of eqs.(3.20), (3.21) and
(3.22).

Examples of density of states often used are the Gaussian ρG(ϵ), the semielliptic ρE(ϵ), and Lorentzian
ρL(ϵ) ones. The actual forms are given by

ρG(ϵ) =
1√
2π∆

exp[− ϵ2

2∆2 ], ρE(ϵ) =
1
π

√
∆2 − ϵ2, ρL(ϵ) =

1
π
· ∆
ϵ2 + ∆2

. (3.23)
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The Gaussian ρG(ϵ) is obtained by extrapolating the simple cubic lattice to d = ∞. The nearest neighbor
hopping t is scaled so as to give ∆2 = znt2 [60]. On the other hand ρE(ϵ) corresponds to the Bethe lattice
of the Cayley tree with infinite number of nearest neighbors [61]. It is known that one can construct the
single particle spectrum from arbitrary density of states [62].

As the simplest case to derive the analytic solution, we take the Lorentzian density of states ρL(ϵ) for
the conduction band. We have D0(z) = (z + i∆)−1 with Im z > 0, and from comparison of eqs. (3.21)
and (3.22) we obtain λ(z) = −i∆. Here ∆ has the meaning of the half-width of the band. The Green
function is given by

D(z) =
1 − nf

z + i∆
+

nf

z + i∆ − U
, (3.24)

and the self-energy by

Σ(z) = Unf +
U2nf (1 − nf )

z + i∆ − U(1 − nf )
. (3.25)

In eq(3.25) we see how the higher-order correlation modifies the MFA result given by the term Unf .
It turns out that the self-consistency equations for D(z) are the same as the one in the CPA [49, 51].

To see the origin of equivalence we may regard ϵf as a random variable so that the probability of having
potential U for conduction electrons is given by nf . For the Hubbard model, the CPA corresponds to
an approximation called the alloy analogy [15]. Of course the alloy analogy is not exact in the Hubbard
model in contrast to the Falicov-Kimball model. This is simply because the occupation number of either
spin is not a constant of motion in the Hubbard model.

We comment on the stability of the solution for the Falicov-Kimball model. If the average occupation
nf is between 0 and 1, the homogeneous state corresponding to the above Green function becomes
unstable at low temperatures. This instability shows up as divergence of the charge susceptibility with a
certain wave number, which corresponds to a charge density wave pattern [57]. The instability inevitably
arises because the entropy associated with the charge disorder is not removed in the homogeneous state
even at T = 0.

dynamic variational principle

In the intuitive derivation above, one may wonder whether the self-energy Σ(z) of the effective impurity
is indeed the same as that of the whole system. In order to inspect the problem on a more solid basis, it
is convenient to use the variational principle combined with path integral representation of the partition
function Z. Instead of the Falicov-Kimball model we now take the Hubbard model as the next simplest
model. In a symbolic notation, the partition function Z is represented by

Z = Tr exp(−βH) =
∫

Dc†Dc exp(−βL),

L = −tr(c†g−1c) + HU ,

where g−1 is the inverse matrix of the Green function without the interaction part HU , and the two-
component Grassmann numbers c (spin index omitted) correspond to annihilation operators of up- and
down-spin electrons. The symbol tr represents the trace over sites, spins and Matsubara frequencies. The
path integral representation is explained in detail in Appendices F and G. With use of the site-diagonal
self-energy matrix Σ, we define the renormalized Green function matrix G by G−1 = g−1 − Σ. The
unknowns Σ and G are to be optimized variationally.

According to the many-body perturbation theory [52, 53] as explained in Appendix G, the thermody-
namic potential Ω of the system is given by

βΩ = Φ{G} − tr(ΣG) − tr ln(βG−1), (3.26)

where Φ{G} satisfies the relation δΦ/δG = Σ. Since Σ is diagonal in site indices, Φ depends actually
only on D which is the site-diagonal element of G. Hence the second term in the right hand side also
depends only on D. In order to exploit the situation we decompose the Lagrangian L as L = LG + Lint

[54]. Here
LG = −tr(c†G−1c), Lint = HU − tr(c†Σc). (3.27)

We regard LG as the unperturbed Lagrangian. If one keeps this part only, the path integral leads to
the third term of eq.(3.26). The sum of the first and the second terms represents the correction due to
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Lint, which depends only on D at d = ∞. Hence in evaluating the interaction parts with the statistical
distribution specified by LG, one may replace every Green function G by D. Namely we can approximate
the partition function as Z = ZG(Z1/ZD)N where

ZG = det(βG−1), ZD = det(βD−1), (3.28)

Z1 =
∫

Dc†0Dc0 exp[β
∑
nσ

c†0σ(D−1 + Σ)c0σ − βHU1]. (3.29)

Here Z1 and HU1 stand for the single-site contribution, and the summation in eq.(3.29) is over spin
states and the Matsubara frequency iϵn.

Evaluation of Z1 is tantamount to solving the effective single-site problem in the presence of a dynamic
external field. If one can solve the problem for arbitrary Σ, one can optimize Σ such that the thermody-
namic potential Ω = −T lnZ is minimized. Then one can get the exact solution at d = ∞. In reality the
stationary condition instead of the minimum condition is used to obtain the self-consistency equation
for the Green function. By differentiating each term constituting −βΩ = lnZ, we get the equation

1
N

δ lnZ

δΣ(iϵn)
= −D(iϵn) − D(iϵn)

δD(iϵn)−1

δΣ(iϵn)
+ Gl(iϵn)[1 +

δD(iϵn)−1

δΣ(iϵn)
], (3.30)

where the third term in the right hand side comes from Z1, and Gl(iϵn) represents the Green function
of the effective single impurity. We notice that the Green function without HU1 is given by [D(iϵn)−1 +
Σ(iϵn)]−1. Introducing the self-energy correction due to HU1 as Σl(iϵn), we obtain

Gl(iϵn)−1 = D(iϵn)−1 + Σ(iϵn) − Σl(iϵn). (3.31)

Then the stationary condition δΩ/δΣ = 0 leads to Gl(iϵn) = D(iϵn), namely Σ(iϵn) = Σl(iϵn). Thus
the relationship between D(z) and Σ(z) reproduces eq.(3.21). Note that the stationary condition is
independent of the way we solve the effective single-site problem. Equation (3.21), which has been
derived for the Falicov-Kimball model on intuitive grounds, is in fact valid also for the Hubbard model
[58, 59]. It is also valid for the f electron Green function in the Anderson lattice model [54, 55, 56] which
we now discuss.

The partition function for the Anderson lattice is given by

Z = Tr exp(−βHAL) =
∫

Df†DfDc†Dc exp

(
−

∫ β

0

dτL(τ)

)
,

L =
∑
kσ

(c†kσ

∂

∂τ
ckσ + f†

kσ

∂

∂τ
fkσ) + HAL.

Since the Lagrangian is bilinear in c† and c, the integration over them can be done explicitly. The result
is

Z = Zc

∫
Df†Df exp

(
−

∫ β

0

dτ(Lf + Lhyb)

)
,

Lf =
∑
iσ

f†
iσ

∂

∂τ
fiσ + Hf ,

Lhyb(τ) = V 2
∑
ijσ

∫ β

0

dτ ′f†
iσ(τ)gij(τ − τ ′)fjσ(τ ′).

where Zc is the partition function of the conduction electrons without hybridization, and the hybridiza-
tion is assumed to be local for simplicity.

The f electron Lagrangian obtained above is reduced to that in the Hubbard model if Lhyb is replaced
by the transfer term without retardation. The presence of retardation in Lhyb makes no difference,
however, in deriving the self-consistent medium. Writing the on-site Green function of f electrons as
Df (z) we again introduce λ(z) and Σf (z) the former of which represents effective hopping through
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hybridization, and the latter accounts for the Coulomb interaction at the site. The variational procedure
gives the self consistency equation

Df (z) = [z − ϵf − λ(z) − Σf (z)]−1 =
1
N

∑
k

(
z − ϵf − V 2

z − ϵk
− Σf (z)

)−1

. (3.32)

One has to solve the effective single-impurity problem to derive Σf (z) under given values of λ(z) and U .

reduction to the Anderson impurity model

In order to solve the effective single-impurity problem in the Anderson lattice or in the Hubbard model,
it is convenient to map to the single-impurity Anderson model [58]. Namely we use the spectral repre-
sentation of the effective field λ(z) as

λ(z) = ∆ϵf +
1
N

∑
k

|Vk|2
z − ϵc(k)

, (3.33)

where the constant part ∆ϵf represents a shift in the local electron level, Vk is the effective hybridization,
and ϵc(k) represents the spectrum of fictitious conduction electrons in the Anderson model. For a given
λ(z), Vk and ϵc(k) are not uniquely determined. Thus one has a freedom to choose a combination that
is most convenient for the calculation.

In the case of the paramagnetic ground state, the mapping to the Anderson lattice leads to two
remarkable identities related to local response functions. The first is that the Wilson ratio tends to 2
according to eq.(2.39) as the charge fluctuation is suppressed. The second is the Korringa-Shiba relation
given by eq.(2.71) is valid. Note, however, that the local static susceptibility can be much different from
the homogeneous susceptibility in the presence of intersite interactions. The local dynamic susceptibility,
on the other hand, is directly probed by the NMR.

As the special case where the self-consistency equation is solved analytically, we take the Hubbard
model at d = ∞ with the Lorentzian density of states for the conduction band. The center of the band
is taken to be ϵf , namely

ρL(ϵ) = (∆/π)[(ϵ − ϵf )2 + ∆2]−1.

To see why the analytic solution is possible in this case, we observe that eq.(3.21) leads for Imz > 0 to

D(z) = [z − ϵf − Σ(z) + i∆]−1, (3.34)

which takes the same form as the f electron Green function in the single-impurity Anderson model with
the constant density of states ρc for the conduction band and hybridization V . Namely the correspon-
dence is ∆ = πV 2ρc. The resultant Anderson model in this case can be solved exactly by the Bethe
Ansatz method [54]. Then one can derive thermodynamic quantities such as the susceptibility and the
specific heat of the Hubbard model. Since the ground state of the Anderson model is always the Fermi
liquid, the Hubbard model with the Lorentzian density of states also has a paramagnetic Fermi-liquid
ground state. As U is increased the effective band-width of the Hubbard model decreases just like the
Kondo temperature TK of the Anderson model. From this solvable case one can imagine that the Hub-
bard model in general can have a minute structure of the density of states near the Fermi level as in the
Anderson model. This structure represents formation of a narrow band with a large effective mass.

Except for this particular density of states, one must solve the effective single-impurity problem either
approximately, or by numerical methods. One has to determine the effective medium self-consistently,
which is usually done by iteration. Thus the numerical calculation is much more laborious than the
single-impurity case. We should notice that the self-consistent solution does not necessarily correspond
to the local minimum of energy, but to a stationary solution. One has to examine fluctuations around
the stationary state in order to study the stability of the solution.

special situation in the half-filled case

Although the effective impurity model to be solved is the same for both Hubbard and Anderson lattice
models, the most significant difference between the two models appears if the ground state is insulating.
Namely the Hubbard model with one electron per site, which is conventionally referred to as the half-
filled case, has the Mott insulating state explained in Chapter 1. Namely as the Coulomb interaction U



96 CHAPTER 3. METALLIC AND INSULATING PHASES OF HEAVY ELECTRONS

increases, the ground state of the model can change from a paramagnetic metal to an antiferromagnetic
insulator with doubling of the unit cell. We note that the Mott insulating state does not always have a
magnetic order. The clearest counter-example is the one-dimensional Hubbard model where the ground
state in the half-filled case is a paramagnetic insulator. In the infinite-dimensional theory, however, the
insulating paramagnetic state has a residual entropy since the effective impurity spin has no relaxation
in the presence of an excitation gap. To improve the situation one has to include spin-fluctuation effects
which enters only in finite dimensions.

In the exactly soluble case of the infinite-dimensional Hubbard model with ρL(ϵ), there is no metal-
insulator transition even in the half-filled case with large U . The absence of the transition is connected
to the divergent energy of the Lorentzian density of states:∫ 0

−∞
ϵρL(ϵ)dϵ = −∞. (3.35)

In this case the localization of electrons is energetically unfavorable. The metallic ground state corre-
sponds to the fact that the Anderson model, which is mapped from the Hubbard model, remains a Fermi
liquid even in the limit of large U .

On the other hand the insulating ground state in the Anderson lattice model connects continuously
to the band insulator which does not have a residual entropy even without magnetic order. We note
that the Kondo lattice model with half-filled conduction band is also connected continuously to the band
insulator.

3.5 Methods for Solving the Effective Impurity Model

In this section we turn to practical ways to solve the model and corresponding results of the dynamical
effective field theory. A large number of investigations have been performed particularly for the Hubbard
model with use of the dynamic effective field theory. Many of them are motivated by the presence of
the metal-insulator transition and deal with the half-filled case. For general filling, one has to adjust
the chemical potential so as to reproduce the desired number of electrons, and the calculation becomes
much more laborious. The same remark applies to the Anderson lattice model. We shall explain below
various methods to solve the effective impurity model.

3.5.1 Perturbation theory with respect to the Coulomb interaction

Let us consider the half-filled case in the Hubbard model. The Hartree term shown in Fig.3.18(a) pushes
up the localized level from ϵf to 0. A particular feature in the half-filled case is that the second-order

( a ) ( b )

Figure 3.18: The Feynman diagrams for the self-energy: (a) the first order approximation, (b) the
second-order one.

theory for the Green function fortuitously reproduces the atomic limit ∆/U → 0. In order to see this we
use the Hartree result as the Green function in Fig.3.18(b): G(1)(iϵn) = (iϵn)−1. In the imaginary time
domain this becomes G(1)[τ ] = −sign(τ)/2. Hence we obtain the self-energy Σ(2)[τ ] = −U2sign(τ)/8
whose Fourier transform is Σ(iϵn) = U2/(4iϵn). Thus the Green function G(2)(iϵn) in the second
approximation is given by

G(2)(iϵn) =
1

iϵn − U2/(4iϵn)
=

1
2

(
1

iϵn + U/2
+

1
iϵn − U/2

)
, (3.36)



3.6. EXPLICIT RESULTS BY DYNAMIC EFFECTIVE FIELD THEORY 97

which actually gives the correct atomic limit [58]. If U is small, the low-order perturbation should
obviously be reasonable. Thus if one uses the renormalized Green function which includes both the
Hartree field and the dynamic effective field in determining the self-energy, one obtains an interpolation
which reproduces both the atomic limit and the band limit. It is also known in the Anderson model [63]
that the second-order self-energy constitutes a good approximation in the case of ϵf + U/2 = 0.

We emphasize that this fortuitous situation is strictly limited to the half-filled case. In the non-
half-filled case the second-order theory becomes insufficient for large U . Moreover, in order to satisfy
conservation laws in response functions, it is necessary to use the Green function which includes the
Coulomb interaction self-consistently[64, 65]. Unfortunately the atomic limit is then no longer reproduced
even in the half-filled case.

3.5.2 Perturbation theory from the atomic limit

As we have seen in Chapter 2, the NCA gives reasonable dynamical and thermodynamical results in the
case of large degeneracy for the local electron level. Thus it is also applicable to solving the effective
impurity problem. The effective hybridization is determined by eq.(3.21). This scheme has first been
proposed as the extended NCA (XNCA) for the Anderson lattice [67, 54, 68]. The same theory is
applicable to the Hubbard model with the generalization of the NCA to the case of finite U [69, 70]. As
will be shown in the next section, the numerical result for the density of states is in very good agreement
with the quantum Monte Carlo simulation. Since the NCA cannot describe the Fermi liquid ground state
[45], however, minute-energy excitations from the metallic ground state of the Hubbard and Anderson
models cannot be discussed by the XNCA.

3.5.3 Quantum Monte Carlo method

The quantum Monte Carlo (QMC) method has been applied to the single-impurity Anderson model with
an infinite number of conduction electrons, and is explained in detail in ref.[71]. The basic idea of the
method is very briefly explained in Appendix G. Dynamical results such as the density of states have
also been derived by combination with the maximum entropy method which effectively maps a quantity
in the imaginary-time domain to real frequencies [77]. Application of the QMC to solving the effective
impurity model has been made [59, 72, 73, 74, 75, 76]. The method is powerful in giving overall features
at finite temperatures. There is, however, a serious technical difficulty in approaching the low energy
range at low temperatures.

3.5.4 Numerical renormalization group

A powerful method complementary to the QMC is the numerical renormalization group (NRG) explained
in 2.1.2. Extension of the approach to dynamical quantities has been also made [78, 79]. We refer to
original articles [79, 80] on how to implement calculations for dynamics. Since the NRG is most powerful
in the low-energy excitations at zero temperature, its application to the infinite dimensional model shares
the same advantage. In the case of the Hubbard model at half-filling, for example, a minute energy scale
analogous to the Kondo temperature has been identified near the metal-insulator transition [82].

3.6 Explicit Results by Dynamic Effective Field Theory

We show in this section some explicit numerical results for the Hubbard model and the Anderson lattice
in infinite dimensions.

3.6.1 Hubbard model

The Hubbard model can teach us how the heavy energy band is formed within the single band which
has both itinerant and localized characters. Figure 3.19 shows the density of states for single-particle
excitations [66]. The half-filled case is shown in (I) and a doped case in (II). The Gaussian density of
states is used as the noninteracting one to start with. It is remarkable that the agreement of the Monte
Carlo result with the XNCA one is excellent. This is because the numerical results are for temperatures
well above the critical one where the inadequacy of the NCA appears.
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Figure 3.19: Numerical results for the density of states written as A(ω) here. The half-width ∆ is taken
as the unit of energy. The temperature in (I) corresponds to β = 7.2. Each line represents the following:
solid line — QMC; dashed line almost overlapping with the solid line — XNCA; double-dot-dashed
line — second order perturbation in U ; dot-dashed line — an approximation called LNCA [81]. The
temperatures in (II) are β = 3.6 in (a) and (c), while β = 14.4 in (b) and (d). The electron number per
site is ne ∼ 0.94 in (a) and (b), while ne ∼ 0.8 in (c) and (d).
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Figure 3.20 shows the result of the numerical renormalization group [82]. The most significant feature
is the very sharp density of states. This means that the energy scale near the metal-insulator transition
becomes extremely small. Such a small energy scale is hardly accessible by other methods including the
quantum Monte Carlo method.

Figure 3.20: The density of states ρ(ω) calculated by the numerical renormalization group method. The
half-width ∆ is taken as the unit of energy. The solid line shows the result for the Hubbard model with
U = 4, while the dashed line shows the noninteracting one ρ0. The dot-dashed line shows the Anderson
impurity with hybridization intensity corresponding to ρ0 with U = 4.

Figure 3.21 shows the excitation spectra of spin and charge calculated by the numerical renormalization
group [82]. These spectra correspond to the momentum average of the imaginary part of response
functions. The local spin excitation spectrum is relevant to the NMR. It is evident that the characteristic
energy of charge excitation is much larger than that of spin.

Figure 3.21: Excitation spectra computed by the numerical renormalization method. The dashed line
shows ρ with the half width W ∗ = 8.3 × 10−3. The dot-dashed line shows Imχs(ω)/ω representing the
local spin spectrum and double-dot-dashed line does the charge one. They are normalized to unity at
ω = 0, and the absolute magnitude of Imχs(ω)/ω is larger than Imχc(ω)/ω by 104. The solid line shows
ImΣ(ϵ) with the scale on the right.

3.6.2 Anderson lattice

The f -electron density of states in the Anderson lattice with infinite U was computed by the use of the
XNCA [68]. Figure 3.22 shows some examples of results where the f -electron level is sixfold degener-
ate. The parameters in the model are chosen so that the bare f -electron level is ϵf = −1500 K, the
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hybridization intensity W0(ϵ) defined in eq.(2.41) is 135 K for |ϵ| < 104 K and is zero otherwise. With
these parameters we obtain the Kondo temperature TK ∼ 16 K. Here TK is calculated from the formula

TK = D

(
nW0

D

)1/n

exp
(

ϵf

nW0

)
, (3.37)

which corresponds to the next-leading order theory in the 1/n expansion discussed in Chapter 2. The
f -electron occupation number nf is computed as nf ∼ 0.91 for T ∼ TK . The actual calculation was
performed for the grand canonical ensemble. It is seen in Fig.3.22 that a double-peaked structure develops

Figure 3.22: The f -electron density of states in the Anderson lattice at finite temperatures [68]. The
Kondo temperature TK is 16 K according to eq.(3.37).

in the density of states as temperature decreases below about TK . This dip is interpreted as a remnant
of the hybridization gap which would result in the case of electrons without Coulomb interaction. In this
interpretation the effective f -electron level ϵ̃f lies about 17 K above the Fermi level although the bare
level ϵf lies deep below the Fermi level. Because of the finite life time of correlated electrons away from
the Fermi level, the hybridization gap may not open completely even at T = 0. It should be remarked
that the characteristic energy in the Anderson lattice is slightly enhanced over that of the impurity
Anderson model with the same W0(ϵ) and ϵf . This is judged [68] from single-particle properties such as
ϵ̃f and the renormalization factor af defined by eq.(2.67).

Suppose now that the Anderson lattice with a single conduction band and without orbital degeneracy
of f electrons has two electrons per unit cell. According to the energy-band theory, the ground state is
insulating since the lower hybridized band is completely filled and the upper one is completely empty.
One can ask if the situation remains the same under a large value of U . It may happen that the
system orders magnetically. In such a case the f electrons get localized and do not contribute to the
band filling. For the simplest case of ferromagnetic order, the conduction band is half-filled and the
system becomes metallic. In the case of antiferromagnetism with doubling of the unit cell, the ground
state can be insulating. Another interesting case is when the system remains paramagnetic and can be
adiabatically continued from the noninteracting limit. Then the band picture holds and the hybridization
gap separates the filled and empty Bloch states.

This hybridization-gap picture is quantitatively tested by the quantum Monte Carlo simulation [83].
The result shows that although the Coulomb interaction reduces the energy gap, the hybridization gap
picture is supported by the result that the spin excitation gap is twice the gap in the density of states.
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With increasing temperature, however, the gap disappears in strong contrast with the noninteracting
system. Thus the density of states is strongly dependent on temperature for large U .

Such an insulating ground state has also been studied by means of the numerical renormalization
group [84]. The results for the density of states and dynamical susceptibilities of spin and charge are
shown in Fig.3.23. We remark that the thresholds for the spin and charge excitations are the same in
agreement with the band picture. However, the dominant spectral weight of the charge excitation lies
in a much higher energy range than that of the spin excitation.

Figure 3.23: Local excitation spectra of f electrons in the Anderson lattice. The unit of energy is TK

defined from the Anderson impurity model with the same parameters. The solid line shows ρf (ϵ), while
the dashed line does Imχs(ω)/ω. The dot-dashed line shows Imχc(ω)/ω multiplied by (D/TK)2 ∼ 103.

The Anderson lattice neglects the Coulomb interaction between f and conduction electrons. In the
insulating state, this interaction gives rise to exciton-like correlation which is commonly observed in the
optical property of semiconductors and insulators. In order to understand the experimental result on
SmB6 [28], it seems necessary to include this Coulomb interaction.

3.6.3 Limitation of the infinite dimensional model

The infinite dimensional model, which is powerful in deriving dynamical properties of heavy electrons,
is by no means a complete theory. Since the intersite correlation is treated only in the mean-field level,
it cannot deal with phenomena which depend on more details of correlation. For example the spin-
pair singlet correlation is specific to finite dimensionality and can only be dealt with in higher order in
the 1/d expansion. The pseudo-metamagnetic behavior in some heavy electrons, as discussed in this
Chapter, also seems to require more detailed account of electron correlations than is possible in the
infinite dimensional model. We shall come back to this problem in Chapter 4.

Going beyond the large d limit, however, encounters violation of the analyticity in the Green functions
[50]. The same difficulty was found in the effort to improve over the CPA [51]. On the other hand, the
thermodynamic quantities such as static susceptibilities do not have such problems and should be easier
for the 1/d expansion beyond the lowest order. We note that the susceptibility of the Ising model as
explained in section 3.4.1 actually includes the 1/d correction.

In dealing with the insulating ground state in the Hubbard model, one must be careful about the
residual entropy problem. The finite entropy problem does not arise in the metallic state because the
itinerant electron motion of the effective impurity removes the spin entropy as temperature decreases.
On the other hand, a localized spin has a finite entropy unless it is completely polarized or fluctuates
quantum mechanically. In the infinite-dimensional theory, however, the quantum fluctuation of spins is
not taken into account although it does account for the quantum charge fluctuation. In other words, in
the half-filled Hubbard model with charge fluctuations suppressed by large U , the entropy can vanish only
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with complete polarization at each site. Thus it is not compatible with quantum magnetism where zero-
point motion reduces more or less the magnitude of ordered moments, or prevents magnetic order as in
one dimension. To deal with the quantum magnetism, an extension of the spherical model approximation
has recently been proposed [85].
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Chapter 4

Anomalous Magnetism

4.1 Characteristics of Heavy-Electron Magnetism

In this Chapter, we discuss magnetically ordered or nearly ordered states of heavy electrons. In describing
heavy-electron magnetism there are two complementary pictures: one from the high temperature side
and the other from the ground state. In the former picture, one regards heavy-electron systems as a
lattice of Kondo centers coupled to each other by the RKKY interaction. Of central interest is the
competition between the RKKY interaction toward magnetic order and the Kondo screening toward
the nonmagnetic singlet state. The RKKY interaction is mediated by conduction band electrons which
are only weakly renormalized. The resultant exchange interaction can be represented by J(q) with no
retardation. Let us assume that the system has strong antiferromagnetic (AF) correlation with the wave
number Q. From eqs.(1.84) − (1.89), the temperature dependence of 1/T1 is given by

1
T1

= 2γ2
nT |Ahf |2

(χL

Γ

) ∑
q

1
[1 − J(q)χL]2

(4.1)

If magnetic order occurs close to the Kondo temperature TK characterizing single-site spin fluctuations,
both χL and Γ are weakly temperature dependent near the transition temperature TN . Then by expand-
ing around q = Q according to eqs.(1.88) and (1.89), the temperature dependence of 1/T1 is roughly
expressed by

1
T1T

∝
√

χQ(T )

|J ′′(Q)| 32 χLΓ
, (4.2)

where J ′′(Q) is the second derivative of J(q) at q = Q. Provided that χQ(T ) follows the Curie-Weiss
law near TN , 1/(T1T ) behaves as (T − TN )−1/2. In some heavy-electron systems such as UNi2Al3, the
above picture on the dynamical response function seems to hold qualitatively.

In the alternative picture from the ground state, one assumes that the magnetic degrees of freedom are
described in terms of itinerant heavy quasi-particles. The dynamical properties reflect strong residual
interaction among quasi-particles. The itinerant picture is supported by the fact that even in the
magnetically ordered state the density of states near the Fermi level remains finite. Then interesting
diversity arises in electronic excitation spectra according to the band structure. For example, there are
cases where the critical behavior is not seen even around TN , and where the Korringa law T1T=constant
is valid even at T far below TN . On the contrary, if a nesting of the Fermi surface is significant,
the excitation gap opens for a large part of the Fermi surface. Then physical quantities have nearly
exponential T dependence below TN , which saturates at lower T because of the residual density of
states. In the following we take up representative examples of anomalous magnetism of heavy electrons.

4.2 Weak Antiferromagnetism in URu2Si2

We first study spin dynamics in URu2Si2. This compound undergoes two phase transitions: First at
TN=17.5 K to an antiferromagnetic (AF) phase with a tiny moment of ∼ 0.04µB , and second to the
superconducting state at Tc=1.2 K. The AF order coexists with the superconducting order. Above 70 K,
the resistivity decreases with increasing temperature as is usually observed in the high temperature range
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representation basis functions
Γ1

t1 ϵ[|4〉 + | − 4〉)] + γ|0〉
Γ2

t1 γ[|4〉 + | − 4〉)] − ϵ|0〉
Γt2 2−1/2[|4〉 − | − 4〉]
Γt3 2−1/2[|2〉 + | − 2〉]
Γt4 2−1/2[|2〉 − | − 2〉]
Γ1

t5 α| ± 3〉 + β| ∓ 1〉
Γ2

t5 β| ± 3〉 − α| ∓ 1〉

Table 4.1: CEF states with J = 4 for the tetragonal symmetry with α, β, γ, ϵ being numerical coefficients.

of heavy-electron systems. The temperature independence of 1/T1 is also consistent with the picture
that the system is described as an assembly of independently fluctuating local moments. Below 70 K
the resistivity drops rapidly upon cooling, and the Korringa law appears as shown in Fig.4.1 [1]. The

Figure 4.1: Temperature dependence of (1/T1) of 29Si (open circle) in external field and 105Ru (solid
circle) in zero field in URu2Si2 [1].

electronic specific heat just above TN is approximately linear in T with γ=180 mJ/(mole K2). Below
TN , the heat capacity and T1 indicate the presence of a gap Eg ∼ 100 K in the spectrum. Nevertheless
a relatively large γ=50 mJ/(mole K2) still remains around Tc.

The bulk susceptibility of URu2Si2 shows a large anisotropy with an easy direction along the c-axis of
the tetragonal symmetry. This is interpreted in terms of the CEF splitting of the J multiplet[2]. A few
schemes of the CEF levels have been proposed for the 5f2 configuration of U4+. In terms of the basis
set |Jz〉 with |Jz| ≤ 4 for the 3H4 configuration, the CEF eigenstates in tetragonal symmetry are given
in Table 4.1. In the model of Niuenhuys [3], the energies of the levels are assumed to be

E(Γ1
t1) = 0, E(Γt2) = 46K, E(Γ2

t1) = 170K, E(Γ1
t5) = 550K. (4.3)

The model calculation based on this scheme leads to an anisotropic susceptibility because the matrix
element 〈Γ1

t1|Jz|Γt2〉 is finite while 〈Γ1
t1|Jα|Γt2〉 with α = x, y is 0. However, the Van Vleck term given

by

χvv = |〈Γ1
t1|Jz|Γ2

t1〉|2
2
∆

tanh
(

∆
2T

)
does not decrease at low temperatures in contrast with experimental results [3]. In an alternative scheme
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[4], the CEF levels are assumed to be

E(Γt3) = 0, E(Γ1
t1) = 44K, E(Γt2) = 111K, E(Γ1

t5) = 485K. (4.4)

In the latter scheme the ground state does not have a finite off-diagonal matrix element of Jz with
nearby levels, but the first and second excited states give rise to finite matrix elements. By this reason
the resultant χzz decreases as the population of Γ1

t1 becomes small with decreasing temperature, in
consistency with experiments. However, the neutron scattering results to be presented below are hard to
explain in the scheme of eq.(4.4). We should mention that in the dilute alloy U0.01Th0.99Ru2Si2, χzz(T )
increases as ln T with decreasing T down to 0.1 K. (see Fig.2.19). This non-Fermi liquid behavior has
been interpreted by the assumption that the ground state CEF level consists of the doublet Γ1

t5 [5].
The antiferromagnetic order and fluctuations in URu2Si2 have been extensively studied by magnetic

neutron scattering . The ordering pattern below 17.5 K is that of a type-I antiferromagnet with spins
along the c-axis and antiparallel between adjacent planes. The ordered moment has magnitude (0.04 ±
0.01)µB , and is polarized along the c-axis [6]. A striking feature of the magnetic response is that both
CEF and itinerant natures appear. Namely, at low energies sharp CEF-like excitations propagate along
the tetragonal basal plane, whereas at high energies and for fluctuations propagating along the c-axis
the excitations constitute broad magnetic fluctuations as observed in other heavy-electron systems.

Figure 4.2 shows the spectrum of inelastic neutron scattering. Well-defined peaks are observed in
energy scans at 1 K for various values of momentum transfer along qa=(1, ζ, 0) [6]. These dispersive

Figure 4.2: Constant-Q scans in URu2Si2 along the (1, −ζ, 0) direction showing sharp magnetic excita-
tions [6]. The energy corresponding to 1THz is 4.1meV.

excitations have a gap of 2 meV at the AF zone center, and are damped out above TN . We note that
the nuclear scattering is forbidden for ζ = 0 because of the body-centered tetragonal structure. From
a series of measurements with various energy and momentum transfers, the dispersion relation for the
magnetic excitation is extracted as indicated in Fig.4.3.

From the integrated intensity of magnetic excitations for polarization along the c-axis, it is found that
the magnetic form factor is typical of 5f electrons like that of UO2. The spin-wave like excitation at
Q=(1, 0, 0) has a large transition-matrix element of gµB |〈i|Jz|f〉| = 1.2µB . Furthermore, this longi-
tudinal inelastic scattering exhibits no broadening beyond the resolution upon application of magnetic
field along the c-axis. The last fact is consistent with transitions between the two singlets and confirms
that the dispersive state is not a part of continuum excitations.

We now turn to low-temperature magnetic excitations at energies well above the dispersive excitation.
Figure 4.4 shows a perspective view of the neutron intensity vs energy and momentum transfer along
qc = (1, 0, ζ) at 5 K. This makes it possible to compare between the dispersive excitation and the
high-energy overdamped response. In the energy region higher than 5 meV, there emerges a continuous
spectrum of dominantly AF spin fluctuations. As seen in the constant-energy scan data at 8 meV, the
scattered intensity decreases when the momentum transfer varies from Q=(1, 0, 0) to qF = (1, 0,±1).
The latter wave number qF corresponds to the ferromagnetic fluctuation. From the width of the peak
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Figure 4.3: Dispersion of excitations in URu2Si2 along the (1, 0, ζ), (1+ζ, ζ, 0) and (1, ζ, 0) directions
[6].

Figure 4.4: Perspective view of scattered neutron intensity vs energy transfer and momentum transfer
along (1, 0, ζ). The data are taken in the ordered phase at T=5 K. At ν=0.5 THz (2 meV), the hatched
region has been reduced by a factor of 10 [6].
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in this scan, it is deduced that the magnetic correlation length along the c-axis is only about one lattice
unit.

Figure 4.5 shows the temperature dependence of the scattered intensity with energy transfer 8 meV at
Q=(1, 0, 0) and qF =(1, 0, 1). The intensity of inelastic scattering above 6 meV remains almost unaffected
by the magnetic transition at 17.5 K, and persists up to 40 K. Whereas the inelastic scattering intensity at
Q=(1, 0,0) decreases slightly with increasing temperature, the intensity at qF =(1, 0, 1) increases so that
both intensities become comparable above 100 K. Thus the difference between ferro and AF correlations
become significant only below 100 K. It should be noted that the development of AF correlations roughly
coincides with the temperature below which the resistivity of URu2Si2 begins to decrease.

Figure 4.5: Scattered neutron intensity vs temperature at energy transfer of 1.9 THz (8 meV) and
scattering vectors (1, 0, 0) and (1, 0, 1). The dashed line is the background [6].

The high-energy response may be regarded as due to itinerant particles which have a large f electron
weight. This view is supported by the variable amplitude of the magnetization and by the f electron-like
magnetic form factor. Thus the response bears a resemblance to that observed in other heavy-electron
systems. The formation of fermionic itinerant particles is also manifested by the onset of metallic
T dependence in the resistivity, and the NMR result with the Korringa law. The itinerant particles
become antiferromagnetically correlated below 100 K. We note that these itinerant particles may have
a character much different from that of Landau quasi-particles since the temperature is high.

The presence of sharp magnetic excitation in URu2Si2 is unique among heavy-electron systems. The
dispersion relation and intensities of low-energy CEF excitations are well described by the singlet-singlet
model. The model was also applied to explaining the T dependence and anisotropy of the magnetic
susceptibility. With assumption of a singlet ground state and with a quadrupole ordering [4], the CEF
model of eq.(4.4) can roughly describe observed behaviors of linear and non-linear susceptibilities and
λ-type anomaly of the specific heat at TN . However the ordered moment predicted by this simple model
is an order of magnitude larger than the experimental value.

The reason for the presence of the tiny ordered moment is an unresolved problem. Actually, no
hyperfine broadening of the Si-NMR spectrum is detected at the onset of the long-range order. If the
AF sublattice moment of 0.03 µB is really static, this amount of moment should have led to observable
hyperfine broadening. Thus another possibility is that the magnetic order is not static but is slowly
fluctuating. If this is the case, the time scale should be longer than the one for the neutron scattering,
but shorter than the one for the NMR. We note that this anomalous magnetic property resembles with
the one found in UPt3.

In concluding this section we mention a related material UPd3 although it is not classified as a heavy
fermion system but as a localized 5f system. This compound crystallizes in a hexagonal structure with U
ions occupying either hexagonal sites or quasi-cubic sites. The U ion at the hexagonal site shows a clear
crystal field splitting of the order of 10 meV, but the CEF splitting at the quasi-cubic site is much smaller
[7]. It has been shown by neutron scattering that the paramagnetic phase enters an ordered phase with
no magnetic moment at T1 =6.5 K, and further to the weak antiferromagnetic phase at T2 =4.5 K [8].
The intermediate phase has in fact a quadrupole order with triple-Q structure. The relationship to weak
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magnetism in URu2Si2 should be investigated further. We shall explain in more detail the quadrupole
order in 4.6 for the case of CeB6.

4.3 Antiferromagnetism in UPd2Al3 and UNi2Al3

UNi2Al3 and UPd2Al3 form a new series of antiferromagnetic heavy-electron superconductors with large
uranium-derived moments 0.24 µB and 0.85µB , respectively [9]. The transition temperatures are TN=4.6
K and Tc=1 K for UNi2Al3 and TN=14.5 K and Tc=2K for UPd2Al3. Of these, UPd2Al3 exhibits the
highest Tc and the largest ordered moments as heavy-electrons. The superconducting properties will be
discussed in detail in Chapter 5.

The magnetic susceptibility χ(T ) of single crystal UPd2Al3 shows easy plane anisotropy in contrast
to the case of URu2Si2. A Curie-Weiss-type behavior with effective moment 3.6 µB/U-atom is observed
for both directions at temperatures higher than 150 K. χ(T ) shows a maximum at around 35 K and
abruptly decreases below TN=14.5 K. The magnetic order consists of ferromagnetic sheets in the basal
plane which are coupled antiferromagnetically along the c-axis with an ordering vector Q = (0, 0, 1/2).
The large λ-type anomaly of the specific heat at TN for UPd2Al3 accompanies a large T -linear term
with γ=150 mJ/(molK2). These features are similar to those in URu2Si2, but the size of the ordered
moment and the nature of the ordered state are very different.

By contrast, the T -dependence of 1/T1 of 27Al in UPd2Al3 shows a behavior common to that in
URu2Si2 [10]. Below TN , 1/T1 drops markedly, and is fitted by the following simple form:

1
T1T

= A + B exp (−Eg

T
).

The first term originates from the particle-hole excitation in the Fermi liquid state. When the super-
conductivity is suppressed by the magnetic field, the Korringa law remains valid down to T < TN . This
result means that the spin-wave excitation is not responsible for the relaxation process in the low T
regime. The second term should be related to the energy gap due to the magnetic ordering. According
to a tentative estimate, a half of the density of states is lost below TN .

The susceptibility χ(T ) in UNi2Al3 does not exhibit a Curie-Weiss behavior below 300 K. A small
maximum of χ(T ) vs T appears around 100 K, which is followed by a minimum around 30 K and a
clear peak at TN=4.6 K[9]. Elastic neutron scattering measurement on a single crystal has revealed that
this compound has an incommensurate SDW-type order. The wave vector is Q=(1/2 ± τ, 0, 1/2) with
τ = 0.11 and the size of the ordered moment is 0.24 µB/U. As shown in Fig.4.6, 1/T1 of 27Al does not
follow the Korringa law in the paramagnetic state. It tends to saturate above room temperature [10].
1/T1 approaches a linear T dependence well below TN = 4.6 K when the superconducting transition
is suppressed by the magnetic field. These features are different from those commonly observed in
other heavy-electron systems. Namely 1/T1 usually undergoes a smooth crossover from the behavior
1/T1=constant at the T region higher than the Kondo temperature to the Korringa law at low T (see
Fig.4.1).

The T dependence of the relaxation in UNi2Al3 is well described by the following expression:

1
T1T

= a + b
1√

(T − TN )
. (4.5)

Here the first term is due to the Al-3p orbital relaxation, and the second is due to the the transferred
hyperfine interactions of 27Al nuclei with uranium 5f electron spins. The characteristic T dependence of
the second term coincides with the expression eq.(4.2) of the staggered susceptibility which follows the
Curie-Weiss law at the wave vector q = Q above TN . From the T dependence of 27(1/T1), it is concluded
that the spin fluctuation in UNi2Al3 possesses a large q dependence in contrast to the standard behavior
of heavy-electron compounds. In the latter case the magnetic response is described as coming from an
assembly of local moments at high T , whereas the response at low T is that of the Fermi liquid. Even
in the latter case the q dependence is weak.

For comparison, we mention that the relaxation of a typical heavy-electron antiferromagnet UCu5

follows eq.(4.5) only just above TN [11]. In the case of UNi2Al3, on the other hand, the wave-number
dependent spin correlations dominate in the wide temperature range from far above TN . Concerning
this difference we remark that the spin fluctuation temperature T ∗ of UNi2Al3 is about 300 K which is
much larger than TN .
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Figure 4.6: Temperature dependence of (1/T1) of 27Al In UNi2Al3 [10].

We have thus seen that the nature of magnetic fluctuation and spin structure of two isostructural
U compounds are different from each other. Nevertheless it is remarkable that the Korringa law is
commonly valid in the magnetically ordered state well below TN for both compounds.

4.4 Magnetic Correlation in CeCu2Si2

According to the inelastic neutron experiment on polycrystalline samples of CeCu2Si2, the quasi-elastic
scattering intensity has a width of Γ ∼ 10 K [12], which suggests TK ∼10 K. This value lies between
the case of CeCu6 with TK=6 K and that of CeRu2Si2 with TK=23 K. As expected, the value of the
T linear coefficient γ of specific heat is correspondingly large; γ=800 mJ/(mole K2) and we obtain
γTK/kB ∼ 6×1023 /mole. Note that we have reinstated the Boltzmann constant here. The latter value,
close to the Avogadro’s number, is comparable to those in CeCu6 and CeRu2Si2, and is a measure of
numbers of heavy electrons.

CeCu2Si2 shows anomalous magnetism near the superconducting transition at Tc=0.7 K. The NQR
intensity observed around 3.435 MHz decreases upon cooling below 1 K without any broadening asso-
ciated with spontaneous magnetic moments [13, 14]. This anomalous state is called the phase A which
does not have a static magnetic order, but has a very slow magnetic fluctuation with frequencies compa-
rable to the NQR frequency ωN [14]. This dynamical character of the phase A is consistent with recent
µSR experiments [15]. Neutron scattering experiments detect neither magnetic Bragg peaks nor any
superstructure which indicates an order parameter of spin-density-wave (SDW) or charge-density-wave
(CDW) for the phase A. We mention that the phase A was first suggested by magneto-resistance [16],
and its magnetic nature was confirmed by NMR [13, 17, 18] and muon spin rotation (µSR) [19].

A series of polycrystalline CexCu2+ySi2 in the vicinity of stoichiometric composition together with a
high-quality single crystal have been studied by measurements of elastic constant and thermal expansion
[15, 20, 21, 22, 23]. In this process another phase called the phase B was identified above 7 T. Figure
4.7 shows the phase diagram obtained on a high quality single crystal of CeCu2Si2 [20]. The phase A
and the superconducting phase are extremely sensitive to sample preparation, especially to the nominal
content x [22] of Ce. The phase A under zero field seems to be expelled below Tc by the onset of
superconductivity in both high-quality single crystalline [20] and polycrystalline samples [22]. From
these macroscopic measurements it is suggested that CeCu2Si2 is close to a quantum critical point [23]
where different ground states meet each other.

Figure 4.8 shows the temperature dependence of 1/T1 of 63Cu under zero field for a series of CexCu2+ySi2
compounds [24]. For x=0.975 below 1 K, there appear long (T1L) and short (T1s) components in the re-
laxation. In this case both components are estimated as shown in Fig.4.8. In other cases of CexCu2+ySi2,
there is only a single component in T1
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Figure 4.7: Magnetic field H vs temperature phase diagram of CeCu2Si2 with H in the tetragonal basal
plane (H ⊥ c−axis). The phase boundaries are determined from elastic constant, magnetostriction and
thermal expansion anomalies [20].

Figure 4.8: T dependence of NQR 1/T1 in CexCu2+ySi2. In the particular case of Ce0.975Cu2Si2 below
1 K, short (T1S) and long (T1L) components of 1/T1 appear [24].
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Above 3 K, 1/T1’s for all the samples fall on the same curve, which shows that TK ∼ 10K is nearly
independent of Ce concentration x. Below 2 K, the T dependence of 1/T1 reflects the difference in the
ground state of each concentration. We note that 1/T1 below 1 K has both short (T1S) and long (T1L)
components [24]. A cusp in 1/T1S for x =0.975 is observed at 0.6 K. This cusp is associated with the onset
of a static magnetic order. On the other hand, 1/(TT1) for x =1.025 is nearly constant between 1.2 K and
Tc. This behavior reflects formation of a Fermi liquid state before the superconductivity appears. For
the state with x =0.99, which seems to have the phase A as the ground state, slow magnetic fluctuations
comparable to ωN ∼ 3.4MHz dominate down to 0.012 K. In this sense, the phase A is characterized as
a “critically magnetic phase”. Note that 1/T1’s in the superconducting state for x =1.025 and x =1.00
follow the T 3 dependence in the range T=0.6 K – 0.1 K, and fall on the single line. This result supports
the conclusion of elastic measurement on a high-quality single crystal [20] that the phase A is expelled
below Tc by the onset of superconducting phase.

Figure 4.9 shows the phase diagram of Ce1−xThxCu2Si2 with Th-content x as the abscissa. Shown
together is that of CeCu2.02Si2 with magnetic field taken as the abscissa [14]. The solid line in the

Figure 4.9: Magnetic and superconducting phase diagrams for CeCu2Si2 as functions of Th content and
magnetic field [14].

H-T plane in CeCu2.02Si2 above 4 T corresponds to those temperatures and fields at which anomalies
appear in the magnetoresistance and the dHvA signal [25]. For CeCu2Si2, TM , which is the transition
temperature to the phase A, is determined as the temperature below which the NQR intensity decreases
without broadening. On the other hand, the (static) magnetic ordering temperature TN is determined as
the temperature below which the NQR linewidth starts to increase. A lattice anomaly has been found at
TM from measurements of thermal expansion and elastic constant [26]. It is seen that antiferromagnetic
order is induced by substitution of Ce for the Th. This seems to be due to the decrease of an effective
f electron number.

As shown by the dashed line in Fig.4.9, Tc of CeCu2Si2 decreases gradually with increasing magnetic
field or content of Th. On the contrary, Tc is enhanced by applying pressure from 0.7 K at ambient
pressure to 2.2 K at 30 kbar [27]. This is understood if one assumes that CeCu2Si2 is on the border of
antiferromagnetism. Then magnetic fluctuations above Tc should have extremely low frequencies. The
application of pressure increases hybridization and hence TK , which means increase of bandwidth of
heavy quasi-particle [18]. The superconducting ground state is favored in such a condition, whereas the
magnetically ordered state is favored by the opposite condition; decrease of either TK or the effective f
electron number.
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4.5 Non-Fermi Liquid Behavior near the Antiferromagnetic Phase
Boundary

When the Kondo exchange interaction J between f and conduction electrons is strong enough, the
ground state is the paramagnetic Fermi liquid. Then weakening the exchange interaction, i.e., reducing
the c − f hybridization can lead to long-range magnetic order. For example in nonmagnetic CeCu6,
Au substitution of Cu expands the lattice parameter, and as result, reduces JK . Actually AF order is
observed in CeCu6−xAux above a critical concentration xc ∼ 0.1 [28]. Conversely, in a CeCu5.7Au0.3

alloy with TN = 0.49 K at zero pressure, the breakdown of the AF order occurs at a critical value pc ∼
8 kbar. In the vicinity of such a magnetic-nonmagnetic transition, strong deviations from Fermi-liquid
behavior are seen. Typical anomalies in physical quantities are: C/T ∼ − ln(T/T0), χ ∼ (1 − αT 1/2)
and ρ ∼ ρ0 + AT . Figure 4.10 shows the temperature dependence of C/T at various pressure values.
Strong deviation from the canonical behavior C/T=const is evident from its logarithmic dependence
C/T ∼ − ln(T/T0) in a wide T range [28]. This non-Fermi liquid behavior has a different microscopic
origin from that in the single ion case discussed in Chap. 2. In the present case the anomalies originate
from dominant collective magnetic excitations caused by the incipient AF order near the magnetic-
nonmagnetic phase boundary.

Figure 4.10: Specific heat C of CeCu5.7Au0.3 plotted as C/T vs ln T for various values of pressure p [28].

4.6 Quadrupolar and Magnetic Orderings in CeB6

CeB6 crystallizes in a Cubic CsCl-type structure with a B6 octahedron in the body center of the cube.
The cubic crystal field around each Ce ion lifts the degeneracy of the sixfold multiplet with J=5/2 of
the trivalent 4f1 configuration into two CEF levels: the ground-state quartet Γ8 and the excited doublet
Γ7 lying above 530 K from Γ8. The phase diagram of CeB6 exhibits anomalous features with two kinds
of ordered phases as shown in Fig.4.11[29]. In the paramagnetic phase (called phase I) at T > TQ = 3.2
K in zero field, the resistivity shows a Kondo-type behavior with TK = 1 K. In the temperature range of
TN=2.4 K < T < TQ, a new phase called II appears which is characterized by the antiferro quadrupolar
(AFQ) ordering with the ordering vector Q = [1/2, 1/2, 1/2] in units of the reciprocal lattice vectors.
With the quadrupole order the Γ8 ground-state should be split into two doublets. Although the AFQ
order itself cannot be observed directly by neutron scattering experiments, the external magnetic field
induces an AF order with the same wavevector as that of the AFQ ordering. The induction is due to
different local susceptibilities associated with two inequivalent Ce ions. In the phase III, which appears
in the lowest T range, a magnetic order develops with the ordered moment 0.28µB and with a double-k
commensurate structure of wave vectors k± = [1/4,±1/4, 1/2].

The anomalous magnetism apparently originates from the interplay of a few relevant effects such as
the single-site Kondo-type fluctuation and intersite quadrupolar and RKKY interactions. We note that
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Figure 4.11: Phase diagram of CeB6 obtained for a magnetic field along [001] and [111] direction of the
cubic structure [29].

TK and TQ are of the same order of magnitude in CeB6.
The Kondo effect appears also as the reduced magnetic moment and a large residual value of electronic

specific heat with γ = 240 mJ/mole·K2 below TN . Furthermore, applied magnetic field enhances TQ

and the specific heat anomaly markedly. An interpretation for this is that application of magnetic field
progressively suppresses the Kondo state; as a result TQ shifts to higher temperature. It is also suggested
[30, 31] that the actual TQ has been reduced much from the mean-field value by fluctuations of the AFQ
order. The number of fluctuating components is an important parameter for the reduction. Since the
applied magnetic field suppresses the fluctuation by lowering the number of equivalent components,
TQ is enhanced. By the same reason the specific heat anomaly is also enhanced. There is also an
interpretation which assumes the octupolar intersite interaction is enhanced by the spin polarization
[32, 33]. The octupole degrees of freedom plays an important role to reconcile the NMR results [34] with
the order parameter in phase II [35].

Upon alloying with La, the system CexLa1−xB6 shows a complex phase diagram with intriguing
dependence on x. A new phase called IV appears with x < 0.75 in the low-field region. On entering
this phase from the phase I, the susceptibility shows a cusp as if it entered a Néel state [36]. However,
the phase IV has very small magnetic anisotropy and small magnetoresistance [37] in contrast with the
phase III. The phase IV also shows a prominent elastic anomaly [38]. It seems that the orbital degrees
of freedom play an important role in realizing these unusual properties.

4.7 Systems with Low Density of Carriers

There are classes of Ce and Yb compounds which have a low carrier density of the order of only 10−3 −
10−2 per formula unit, but which exhibit phenomena like those seen in Kondo systems. They also show
anomalous magnetic properties. Here we present typical examples such as Ce-monopnictides CeX (X=P,
As, Sb, Bi) which show complicated phase diagrams in the plane of magnetic field and temperature, and
Yb4As3 where spin excitations have the one-dimensional character.
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4.7.1 CeP

CeP crystallizes in the NaCl structure. Figure 4.12[39] shows the magnetic phase diagram of CeP. The

Figure 4.12: Phase diagram of CeP for magnetic field along [001] direction[39].

phase boundaries Hc1(T ) and Hc2(T ) are determined from the values of field where a step-wise increase
in magnetization appears. Figure 4.13 shows the magnetic structures as determined by elastic neutron
scattering [39]. In the phase I, Ce spins in each (001) plane align ferromagnetically perpendicularly to
the plane. What is unusual is that the magnetic unit cell is very long along the [001] direction; the
ferromagnetic double layers containing Ce moment of ∼ 2µB are stacked periodically. The Ce ions in
intervening nine layers have moment of 0.7 µB . The values 2 µB and 0.7 µB of ordered moments are
close to those of CEF states labeled as Γ8 and Γ7 in the cubic symmetry.

In the phase II, the AF ordered moments of the Γ7 layers change their direction as shown in Fig. 4.13,
while there is no change in the ordering of Γ8 double layers. In the phase III, the period of ordered Γ8 Ce
layers changes into ten layers, and the Γ7 Ce layers sandwiched by the Γ8 layers become paramagnetic.

These anomalous magnetic structures seem to originate from the low carrier density of this compound
[40]. At low temperatures, holes tend to localize so as to obtain the energy gain through the p-f mixing
interaction. This results in the polarization of 4fΓ8 state. It is not fully understood why the Γ8 double
layers have such long periodicity as eleven layers.

Figure 4.13: Magnetic structure of CeP under magnetic field [39].
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4.7.2 Yb4As3

Yb4As3 exhibits a structural phase transition at 290 K from the mixed valent state in the cubic phase to
the charge ordered state in the trigonal phase. In the mixed valent state the proportion of two valences
is about Yb+3:Yb+2 ∼ 1 : 3, and the average 4f hole number is ∼0.25 per Yb. This leads to metallic
character of the system. On the other hand, the carrier density at low temperatures is extremely low
(10−3 per formula). Nevertheless, the low temperature properties look like those in typical heavy electron
materials. It shows a large T -linear term in specific heat with γ=205 mJ/K2mole, and the resistivity
has a T -square dependence at low temperature, followed by a − log T behavior at higher T [41].

In the charge ordered state, the distance between Yb atoms becomes shorter in the chain along
one of [111] axes and longer in the other directions. This trigonal distortion makes the linear chains
of Yb+3(4f13), which are magnetically active. The chains seem to interact only weakly with each
other in the nonmagnetic background consisting of divalent Yb+2 (4f14). As a matter of fact, inelastic
neutron scattering experiments revealed that the magnetic excitation shows the characteristics of a one-
dimensional (1D) Heisenberg antiferromagnet [42, 43]. The spectrum indicated in Fig.4.14 is close to
the des Cloiseaux-Pearson mode with E1(q) = πJ sin (dq) where d is the atomic distance in the Yb3+

along the chain. Here q is the projection of the wave vector along the Yb3+ chain direction. In the 1D
Heisenberg model, the specific heat at low T is linear in T with γ = 190 mJ/moleK2 at πJ = 3.5 meV.
Then with this value of J , the temperature giving the maximum of the susceptibility is predicted to be
17 K which is close to the experimental observation. Hence the heavy electron behavior in Yb4As3 seems
to be due to the 1D-like spin excitation caused by the charge ordering, rather than due to the Kondo
effect.

Figure 4.14: Dispersion relation of inelastic peaks of Yb4As3 in the 1D representation. The open triangles
show the newest results, and other symbols indicate previous results for different directions from the (002)
reciprocal lattice point. The broken line represents the peak position calculated in the 1D Heisenberg
model [42].

4.8 Quantum Phenomenology for the Dual Character

4.8.1 Coexistence of itinerant and localized characters

At present there is no microscopic theory to explain the small ordered moment and anomalous magnetism
in heavy electrons. The origin of the difficulty lies in the fact that these properties depend rather strongly
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Figure 4.15: The density of states of the Anderson model in a magnetic field calculated in the NCA. The
solid lines show the zero-field results, while the dotted lines correspond to majority spins in a magnetic
field, and the dashed lines to minority spins.

on the details of the individual system. Some heavy electrons do not show any magnetic order, nor
any metamagnetism. While others do show such behavior. Because the magnetic fluctuation depends
strongly on momentum in the case of anomalous magnetism, the renormalization theory utilizing 1/n or
1/d as small parameters is not straightforwardly applied. Hence the description in the present section
becomes necessarily qualitative, and contains physical ideas of the authors without confirmation of their
relevance.

In considering the anomalous magnetism of heavy electron systems, it is instructive to see the effect
of magnetic field on the f -electron density of states. Figure 4.15 shows sample results for the single
impurity Anderson model calculated by the NCA [44]. The parameters in the calculation are ϵf =
−1500K, πW0 = 500K and the density of states for the conduction band is constant for |ϵ| < D = 104K
and 0 otherwise. Then the Kondo temperature TK which is given by

TK = D

(
2W0

D

)1/2

exp
(

ϵf

2W0

)
,

amounts to 16 K. As shown in Fig.4.15(a) the magnetic field splits the Kondo resonance into up- and
down-spin resonances, which is analogous but not identical to the Zeeman splitting of a fermion level.
The first difference from the simple level splitting is that the up- and down-spin resonances have different
weights, and the second one is that the splitting is not symmetric about the zero-field peak. The strong
correlation is responsible for the deviation. A dramatic effect of the correlation appears in the energy
range deep below the Fermi level. As Fig.4.15(b) shows, the minority spin component loses much of the
spectral weight although the magnetic energy is very small as compared with |ϵf |. This demonstrates
that the magnetic polarization of f electrons has little to do with the scale ϵf , but is controlled by the
scale TK .

In the case of the Anderson lattice, as we have seen in Chapter 3, the momentum distribution of
f electrons has only a small discontinuity at the Fermi surface, and globally is rather similar to the
localized case. This shows that the f electrons possess an itinerant character close to the Fermi level,
but show a dominantly localized character for the magnetization. At temperatures above TK , many
features of heavy electron systems are common to dilute Kondo systems. This means that the excitation
spectrum except for the low-energy limit is similar in both systems. The essential idea for constructing a
quantum phenomenology is that in the intermediate stage of the renormalization toward the Fermi-liquid
fixed point, there should be local variables which are common in the single-site Anderson model and the
Anderson lattice. It is reasonable to assume that the Kondo spin compensation is already substantial at
this stage.

We set up an effective Lagrangian which includes itinerant fermions and local spin fluctuations. These
variables represent the dual nature of strongly correlated f electrons. Hence we call the present scheme
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the duality model [45]. In this model we make maximum use of known results for the single-site system
in order to understand heavy electrons. Fortunately the single-site Kondo system is now well understood
both for static and dynamic properties with use of various theoretical methods. A renormalization flow
which goes ultimately off the paramagnetic Fermi liquid toward the superconducting phase for example
can also be treated by the duality model.

The separation into the fermion degrees of freedom and the spin-fluctuation part in the effective
Lagrangian makes it possible to introduce a new approximation scheme. As an example we propose a
classical approximation for the most dominant component of spin fluctuations. The approximation is
applied to discussion of metamagnetism and weak antiferromagnetism.

4.8.2 Effective action for the Anderson lattice

We use the Anderson lattice as the starting microscopic model with U much larger than the hybridization
Vµ between f states and the µ-th conduction band. We take Vµ real and neglect its possible dependence
on momentum. As explained in Chapter 3 and Appendix F, the partition function Z at temperature
T = 1/β is written in the form of a functional integral over Grassmann numbers with imaginary time τ .
It is trivial to integrate over the conduction-electron part. For the f electron at site i with spin σ, we
use Grassmann numbers f±

iσ(τ) where f±
iσ denotes either f†

iσ or fiσ. The Fourier transforms with odd
Matsubara frequency ϵn = (2n + 1)πT with n integer are given by

f±
iσ(τ) =

∑
n

f±
iσ(iϵn) exp(−iϵnτ). (4.6)

For low-energy fermion excitations only those components with |ϵn| of O(TK) are relevant. However spin
excitations with low energy are dominated by f±

iσ(iϵn) with |ϵn| much larger than TK . This is because
the low-energy spin excitations are represented by a bilinear form of Grassmann numbers each of which
can have high frequencies.

In order to realize the idea we introduce the auxiliary field via the Hubbard-Stratonovich identity as
explained in Appendix F. The partition function is represented by

Zf ≡ Z/Zc =
∫

Df†DfDφ exp(−A) (4.7)

where Zc is the conduction electron part, and φ is an auxiliary variable representing the fluctuating
magnetic field. The action A = A0 + A1 is given by

A0 = −
∑
ijσn

f†
iσ(−iϵn)[gf (iϵn)−1]ijfjσ(iϵn) − 1

2U

∑
im

|φi(iνm)|2, (4.8)

A1 = −
∑
iαβ

∑
mn

f†
iα(−iϵn − iνm)fiβ(iϵn)σαβ · φi(iνm), (4.9)

where gf (iϵn) is the Green function matrix of f electrons with no Coulomb interaction. We integrate
over high frequency variables in the action. The remaining ones are f±

iσ(iϵn) and φi(iνm) with |ϵn| and
|νm| smaller than cutoffs of O(TK). Furthermore we change variables from φi(iνm) to magnetization
∂A1/∂φi(iνm). Then we need to incorporate the Jacobian associated with this change of variables. Since
the correlation function of magnetization coincides with that of the f -electron spin at low frequencies, we
choose the notation S(iνm) to represent the slow part of magnetization. Note that the quantity S(iνm)
is a c-number.

With this formal procedure we are left with an effective Lagrangian or its integral, the action Aeff ,
which has only low-frequency variables. Namely

Zf =
∫

Df†DfDS exp(−βAeff ), (4.10)

where all variables have now a cut-off energy of O(TK). It is not possible to obtain the explicit form
of the action Aeff by microscopic calculation, since important terms are spread over many orders in
perturbation theory. We thus construct the action phenomenologically following the “minimal coupling”
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principle. Namely we assume a local and instantaneous interaction between fermions and “spins” rep-
resented by S(iνm). The action, with neglect of the shift of the ground-state energy, consists of three
parts as [45]

Aeff = Af + As + Aint, (4.11)

Af = −
∑
ijσn

f†
iσ(−iϵn)[G(0)

σ (iϵn)−1]ijfjσ(iϵn), (4.12)

As =
∑
ijm

Si(−iνm) · Sj(iνm)[χ0(iνm)−1δij − Jij ] −
∑

i

hiSiz(0), (4.13)

Aint = −λ0

∑
iαβ

∑
mn

f†
iα(−iϵn − iνm)fiβ(iϵn)σαβ · Si(iνm). (4.14)

In the fermion part Af , G
(0)
σ (iϵn)−1 is the Green function matrix of f electrons. This involves the site-

diagonal self-energy Σ(0)
σ (iϵn) caused by many-body interactions other than those by spin fluctuations.

The matrix element is given by

[G(0)
σ (iϵn)−1]ij = [iϵn − ϵf − Σ(0)

σ (iϵn) − 1
2
σhi]δij −

∑
µ

V 2
µ gµ

ij(iϵn), (4.15)

where ϵf denotes the f -electron level, gµ
ij(iϵn) is the bare propagator of µ-th conduction band and hi is a

magnetic field at site i. The Green function gf (iϵn) in eq.(4.8) corresponds to the one without Σ(0)
σ (iϵn)

in eq.(4.15).
In the spin part As, χ0(iνm) is a partially renormalized spin susceptibility before inclusion of the RKKY

interaction and the coupling with fermions. For the RKKY interaction Jij we neglect dependence on
energy since the characteristic energy in Jij is usually much larger than TK . We deal with an exceptional
case where the energy dependence cannot be neglected later. In the lowest order in hybridization Jij is
written as

Jij = 2
∑

µ

(
V 2

µ

ϵf

)2

T
∑

n

gµ
ij(iϵn)gµ

ji(iϵn). (4.16)

If we integrate over the spin degrees of freedom in eq.(4.10), we are left with the standard Fermi
liquid theory. In order to discuss magnetic properties, it is convenient to integrate first over the fermion
variables. The result is given by

Z = detG(0)

∫
DS exp(−βAm), (4.17)

Am = As − TTr ln(1 + λ0G
(0)σ · S) (4.18)

where the partially renormalized Green function G(0) is a matrix in the space of site, spin and frequency.
Let us first derive the dynamical susceptibility. By taking the second derivative of Am with respect
to Sq(iνm), which is the Fourier transform of Si(iνm), we obtain the Gaussian approximation for the
dynamical susceptibility. We improve the result by renormalizing the coupling constant λ0 and the Green
function in the polarization bubble. The RKKY interaction is treated in the mean-field approximation,
and intersite effects on the renormalized spin-fermion interaction vertex λ are neglected. Then we obtain

χ(q, iνm)−1 = χ0(iνm)−1 − 2λ2Π(q, iνm) − J(q), (4.19)

where J(q) is the Fourier transform of Jij and

Π(q, iνm) = − 1
N

∑
k

T
∑

n

Gf (k, iϵn)Gf (k + q, iϵn + iνm). (4.20)

4.8.3 Duality picture applied to the Anderson impurity

We assume that the local susceptibility χ0(iνm) and the coupling constant λ are determined mainly by
the local correlation. Then these magnitudes can be estimated by applying the duality model to the
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Figure 4.16: Feynman diagrams for eq.(4.23).

single-site Anderson model. For this purpose we first reformulate the local Fermi-liquid theory at zero
temperature in terms of spin fluctuations and fermion excitations. For simplicity we assume a single
conduction band with constant density of states ρc near the Fermi level. The vertex parts Λ3 and λ3 are
introduced through the relation:

〈Tτf†
↑(τ1)f↓(τ2)f↓(τ)f†

↑(τ)〉 = −
∫ ∞

−∞

dϵ1
2π

∫ ∞

−∞

dϵ2
2π

exp[−iϵ1τ1 + iϵ2τ2 (4.21)

−i(ϵ1 − ϵ2)τ ]G↑(iϵ1)G↓(iϵ2)Λ3(iϵ1, iϵ2; iϵ2 − iϵ1), (4.22)
Λ3(iϵ1, iϵ2; iϵ2 − iϵ1) = 1 + 2λ3(iϵ1, iϵ2; iϵ2 − iϵ1)χ(iϵ2 − iϵ1), (4.23)

where Gσ(iϵ) is the renormalized f -electron Green function. Figure 4.16 shows the relation diagramati-
cally. It is obvious that λ3 has a meaning of coupling strength between fermions and spin fluctuations.
In terms of the self-energy Σσ(iϵ) the Green function is given by

Gσ(iϵ) = [iϵ − ϵf − 1
2
hσ − Σσ(iϵ) + i∆sgnϵ]−1, (4.24)

where ∆ = πV 2ρc is assumed to be a constant in the relevant energy range.
We invoke an important relation which is an example of the Ward-Takahashi identity [46]:

Σ↑(iϵ) − Σ↓(iϵ) = −2Mλ3(iϵ, iϵ; 0), (4.25)

where M = 〈Sz〉 with Sz = [f†
↑f↑ − f†

↓f↓]/2. The identity represents the many-body correction to
the Zeeman splitting. It will be shown later that in the Kondo regime where charge fluctuations are
suppressed, the many-body correction overwhelms the bare Zeeman energy.

It is possible to derive λ3(0, 0; 0) ≡ λ exactly in the case of h = 0. We make use of the Friedel sum
rule for the spin polarization as explained in Appendix G. The result is given by

M =
1
2π

∑
σ

σIm lnGσ(0), (4.26)

where (and in the following) we omit writing the positive infinitesimal imaginary part in the argument
of the Green function. Then the static susceptibility χ is given by

χ =
∂M

∂h
=

1
2
ρf (0)[1 + 2λχ], (4.27)

where ρf (0) = −ImGσ(0)/π. Thus λ is given in terms of ρf (0) and χ. In the Kondo limit where
χ ≫ ρf (0) we obtain

λ = π∆.

The full self-energy Σσ(ϵ) near the Fermi level depends so strongly on ϵ that the wave function renormal-
ization factor is much smaller than unity. Then the fermion degrees of freedom alone do not contribute
to charge and spin susceptibilities. However the magnetic response is influenced by fermions through the
coupling λ. It follows that for small magnetic field the effective Zeeman splitting of the fermion levels
is twice of that without hybridization. This is seen if we recognize that the effective Zeeman splitting is
given by af [Σ↑(0) − Σ↓(0)] and M = h/(4TK).

In the duality picture, the contribution of the local part of the f electrons to the dynamical suscep-
tibility is written as χ0(ω). This is fixed by the condition that the full susceptibility χ(ω) given by the
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duality model must be identical to that given by the Fermi-liquid formula eq.(2.69). In the duality model
we regard the spin-fermion coupling constant λ as independent of ω. Then we obtain

χ(ω) =
χ0(ω)

1 − 2λ2Π(ω)χ0(ω)
(4.28)

where Π(ω) is given by eq.(4.20) with Gf (k, iϵn) replaced by the impurity counterpart:

Gf (iϵn) = af

/ (
iϵn − ϵ̃f − af

∑
k

V 2

iϵn − ϵk

)
. (4.29)

Equation (4.28) is exact in the static limit since the coupling constant λ = π∆ takes precise account
of the vertex correction there. By comparing eq.(4.28) with eq.(2.69) we obtain

χ0(ω)−1 = 2λ2Π(ω) +
2

Λ2
0Π(ω)

− 4TK , (4.30)

There is no ω-linear imaginary part in χ0(ω) because of the cancellation between the first and second
terms. This quasi-gap behavior is consistent with our definition of the spin degrees of freedom which
do not involve the low-energy fermion excitations as their constituents. Thus the spin fluctuations do
not contribute to the T -linear specific heat without coupling to fermion degrees of freedom. The specific
heat C = γT of the Anderson model is determined by the renormalized Green function Gf (ϵ) as

γ =
4π

3
Im

∂

∂ϵ
ln Gσ(ϵ)

∣∣
ϵ=0

,

just as in the Fermi-liquid theory.
We can rely on eq.(2.69) up to frequencies of the order of TK . Then eq.(4.30) fixes χ0(ω) for these

frequencies. Figure 4.17 shows the real and imaginary parts of the susceptibilities χ(ω), χ0(ω) and
Λ2

0Π(ω). As is evident in Fig.4.17(a), Imχ0(ω)/ω displays a structure which is interpreted as a pseudo-
gap of the order of TK for spin excitations. There is a corresponding structure in Reχ0(ω) as shown
in Fig.4.17(b). Note that χ0(0) = χ(0)/3. We remark that Λ2

0Π(ω)/2 corresponds to the dynamical
susceptibility of ref.[47] if one regards 2TK as the Kondo temperature. At high frequencies the imaginary
parts converge to the same asymptotic behavior proportional to ω−3. The odd power is caused by the
logarithmic singularity at ω = ∞ in eq.(4.30). By comparison with a numerical result obtained by the
Wilson-type renormalization theory [45, 48], it is seen that the quasi-particle RPA given by eq.(2.69)
is an excellent approximation for all frequencies. Hence we expect that eq.(4.30) is also a reasonably
accurate representation of χ0(ω) for all ω.

4.8.4 Metamagnetism in the Duality Model

We study the magnetic equation of state on the basis of eqs.(4.17) and (4.18). The basic observation
is that the coupling between spins and fermions causes a large nonlinear effect as the spin polarization
increases. The experimental results on CeRu2Si2 have been discussed in 3.1.1. Now we give a theoretical
aspect of the metamagnetic behavior of heavy electrons. It should be remarked that there is no estab-
lished result on the mechanism of the phenomena. Therefore the discussion below is presented just to
show a consequence of the duality model.

We assume the presence of a static magnetic field hq which is modulated with wave number q. Then
the spin variable Sq ≡ Sq(iνm = 0) becomes macroscopic. We treat this component in the saddle
point approximation, and spin fluctuations with other wave numbers and frequencies as Gaussian. The
equation of state is given by the zero average of ∂Am/∂S−q over the Gaussian variables as follows:

[χ0(0)−1 − J(q) − 2λ2Π(q;Sq)]Sq = hq, (4.31)

where Π(q;Sq) is the polarization function of fermions under finite Sq . For general values of q, Π(q;Sq)

does not have a simple expression. However for the case of q = 0 or q = Q with Q being a reciprocal
lattice vector, we obtain the compact formula

Π(q;Sq) = − 1
N

∑
k

T
∑

n

[Gf (k, iϵn)−1Gf (k + q, iϵn)−1 − |λSq |2]−1, (4.32)
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Figure 4.17: Three kinds of susceptibilities: χ0(ω) (solid line), χ(ω) (dashed line), and a−2
f Π(ω) (dash-

dotted line). Imaginary parts are shown in (a) and real parts in (b).

which of course reduces to Eq.(4.20) in the case of Sq = 0. The itinerant fermions feel λSq as a fictitious
magnetic field with wave number q.

Figure 4.18 shows an example of numerical calculation [49]. The parameters in the calculation are
taken in units of the half-width D of the conduction band as follows:

ρc = 1/2, afλ = 0.01π2/2, afV 2ρc = 5 × 10−3, χ0(0)−1 − J(0) = 2afλ.

The parameter ξF is the energy (measured from the Fermi level) of the conduction electron with the
Fermi wave number. The magnetization jumps for large enough coupling between fermions and spins.
This jump corresponds to the first-order metamagnetic transition. With smaller coupling there appears
smooth but nonlinear behavior of the magnetization, which seems to related to the pseudo-metamagnetic
transition discussed in 3.1.1. This behavior in the duality model comes from non-monotonic dependence
of Π(0;S0) on the magnetization M = |S0|. The itinerant band has a peak in density of states near the
Fermi level due to hybridization, and the Zeeman splitting pushes the peak of either up or down spins
toward the Fermi level. Then Π(0;S0) increases up to certain magnitude of M . With further increase
of M the Zeeman-split peaks of both spins go off the Fermi level so that Π(0;S0) turns to decrease. We
note that the mechanism in the present model calculation is not qualitatively different from a rigid band
picture of f-electrons. The many-body effect is taken into account only in reducing the energy scale. It
is difficult in the duality model to incorporate more details of interaction between quasi-particles and
magnetization.

A very interesting feature in heavy electron systems is that the external magnetic field causes a
nonlinear effect in the itinerant state of f electrons. Experimentally this appears as a change of the
Fermi surface probed by the de Haas-van Alphen effect. In the case of CeRu2Si2 the Fermi surface
below H = 7.7T = HM is roughly consistent with the one predicted by the energy band theory. As the
magnetic field becomes close to HM , the signal shows a strange temperature dependence, suggesting that
the effective mass and/or the Zeeman splitting depend on T . Above HM the Fermi surface observed
has a shape consistent with the localized picture [50]. We note that CeRu2Si2 has a strong Ising-
type anisotropy. Similar magnetization is observed in UPt3 which has a strong XY-type (easy-plane)
anisotropy [51].

There are also many heavy electron systems without the metamagnetic behavior. The characteristics
in magnetization thus depend on details of the system. Such details are best dealt with by the energy-
band theory. In the purely itinerant picture, the metamagnetic behavior is ascribed to characteristic
band structures such as a high peak in the density of states near the Fermi level. Since the Zeeman
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Figure 4.18: Magnetization vs applied magnetic field calculated in the duality model. The parameters
in the calculation are explained in the text. The parameter γ in the abscissa should read λ in the text.

splitting of the energy band causes the peak to cross the Fermi level, the differential susceptibility should
be enhanced at the crossing. In this picture, however, the structure of the density of states should be
extremely sharp, of the order of 0.1 K in CeRu2Si2. It is impossible to reproduce such a tiny structure
by the ordinary band calculation. We remark that the energy scale of 0.1 K is much smaller than the
Kondo temperature of CeRu2Si2 which is of the order of 10 K. In the duality model the tiny structure
comes from combination of the Kondo effect and the coherent hybridization in the periodic lattice. It
is an open problem whether such tiny structure reflects an intersite spin-spin correlation in addition to
the Kondo effect.

4.8.5 Weak antiferromagnetism

On the basis of the magnetic equation of state in the duality model, we proceed to discuss weak antifer-
romagnetism. In this section we take a one-dimensional model to demonstrate the effect of nesting in
the simplest way. In the duality model the weak antiferromagnetism results from strong sensitivity of
the itinerant exchange to the magnitude of magnetization. Let us assume that there is only one heavy
electron band which crosses the Fermi level. We evaluate Π(Q;SQ) with use of the quasi-particle form
given by eq.(4.29). We note that the renormalization factor af is the order of TK/(π2V 2ρc).

The spectrum Ek of the heavy electron is derived very simply provided that |Ek| ≪ |ϵk| is satisfied
for each k near the Fermi surface. We expand ϵk around the Fermi wave number ±kF as

ϵk = ϵF ± vc(k ∓ kF ), (4.33)

where vc is the velocity of the conduction band. Then we obtain

Ek
∼= ±af

∑
µ

(V/ϵF )2 vc(k ∓ kF ) ≡ ±vf (k ∓ kF ), (4.34)

Gf (k, iϵn) ∼= af/(iϵn − Ek). (4.35)

The interaction strength between quasi-particles and spins is determined by λf ≡ afλ. We introduce
the misfit energy δm by δm ≡ vf |Q − 2kF | which simulates deviation from complete nesting in higher
dimensions. Then with use of Eq.(4.34) up to a cut-off energy ±Df , which should be of O(TK), we
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evaluate Eq.(4.32) at T = 0. Straightforward integration gives

Π(Q;SQ) =


1
2
a2

fρf ln
Df

[(δm)2 − |λfSQ|2]1/2 + δm
, (δm > |λfSQ|)

1
2
a2

fρf ln
∣∣∣∣ Df

λfSQ

∣∣∣∣ , (δm < |λfSQ|)
(4.36)

where we have defined the quasi-particle density of states ρf ≡ (πvf )−1 with the lattice constant being
unity. In the case of complete nesting the spontaneous magnetization at T = 0 is given by the solution
of

1
χ0(0)

− J(Q) − λ2
fρf ln

∣∣∣∣ Df

λfSQ

∣∣∣∣ = 0. (4.37)

In eq.(4.37) the smaller magnetization causes larger exchange field from the itinerant part. Since we have
Df ∼ λf ∼ λ2

fρf ∼ TK as order of magnitudes, the condition for weak antiferromagnetism under the
very good nesting is that χ0(0)−1−J(Q) should be much larger than TK . Namely the relevant exchange
interaction responsible for the weak antiferromagnetism is not the usual RKKY interaction. Instead the
heavy electrons themselves mediate the coupling of spins. In this respect the weak antiferromagnetism
of heavy electrons is very similar to that of band electrons in transition metals [52].

In contrast to transition metals, however, the presence of the RKKY interaction leads to specific
dynamical and temperature effects. Suppose that the RKKY interaction does not favor the wave number
Q so that J(Q) is negative. Then χ0(0)−1 − J(Q) can be much larger than TK , and hence than λ2

fρf .
In the present model the dominant exchange interaction changes from the RKKY type at high T to the
anomalous one mediated by itinerant heavy electrons with decreasing T . In this connection we note that
the wave number of most dominant magnetic fluctuations in UPt3 depend on temperature and excitation
energy. The relevant Q for the Néel order can be seen only at low temperature and with low excitation
energy [53].

The Néel temperature TN can be derived by evaluating Π(Q; 0) at finite temperatures. The result at
T larger than δm is given by

Π(Q;SQ) ∼= 1
2
a2

fρf ln
(

Df

T

)
. (4.38)

Comparison with Eq.(4.37) gives the relation between TN and the zero-temperature magnetization SQ

as
TN

∼= λf |SQ|. (4.39)

Thus in the present model the weak antiferromagnetism requires TN to be much smaller than λf and,
hence than TK . The small energy scale TN is generated by the nesting property of the heavy-electron
band. This is again similar to the weak antiferromagnetism in itinerant electrons where the role of TK

is played by the Fermi energy of the conduction band.





Bibliography

[1] T. Kohra, Y. Kohori, K. Asayama, Y. Kitaoka, M.B. Maple and M.S. Torikachvilli, Jpn.J.Appl.Phys.
26, 1247 (1987) ; Y. Kohori et al, J. Phys. Soc. Jpn. 65, 679 (1996).

[2] T.T.M. Palstra, A.A. Menovsky, J. van den Berg, A.J. Dirkmaat, P.H. Kes,G.J. Nieuwenhuys and
J.A. Mydosh, Phys. Rev. Lett. 55, 2727 (1985).

[3] G.J. Nieuwenhuys, Phys. Rev. B35, 5260 (1987).

[4] P. Santini and G. Amoretti, Phys. Rev. Lett. 73,1027 (1994).

[5] H. Amitsuka and T. Sakakibara, J. Phys. Soc. Jpn. 63, 736 (1994).

[6] C. Broholm, H. Lin, P.T. Matthews, T.E. Mason, W.J.L. Buyers, M.F. Collins, A.A. Menovsky,
J.A. Mydosh and J.K. Kjems, Phys. Rev. B43,12809(1991).

[7] W.J.L. Buyers and T.M. Holden, Handbook on the Physics and Chemistry of Actinides, eds. G.H.
Lander and A.J. Freeman (North-Holland 1985) vol.2, p.239.

[8] M.B. Walker, C. Kappler, K.A. McEwen, U. Steigenberger, K.N. Clausen, J. Phys. Condens. Matter
6, 7365 (1994).

[9] C. Geibel, S. Thies, D. Kaczorowski, A. Mehner, A. Grauel, B. Seidel, U. Ahlheim, R. Helfrich, K.
Peterson, C.D. Bredl, F. Steglich, Z. Phys. B 83, 305 (1991).

[10] M. Kyogaku, Y. Kitaoka, K. Asayama, C. Geibel, C. Schank and F. Steglich, J. Phys. Soc. Jpn. 62,
4016 (1993).

[11] S.Takagi, T. Homma and T. Kasuya, J. Phys. Soc. Jpn. 58, 4610 (1989).

[12] S.Horn, E.Holland-Moritz, M.Loewenhaupt, F.Steglich, H.Scheuer, A.Benoit and J.Flouquet, Phys.
Rev. B23, 3171 (1981).

[13] H.Nakamura, Y.Kitaoka, T.Iwai, H.Yamada and K.Asayama, J. Phys. Condens. Matter. 4, 473
(1992).

[14] Y. Kitaoka, H. Nakamura, T. Iwai, K. Asayama, U. Ahlheim, C. Geibel, C. Schank and F. Steglich.J.
Phys. Soc. Jpn. 60, 2122 (1992).

[15] R. Feyerherm et al., Physica B 206-207, 596 (1995) ; Phys. Rev. B 56, 699 (1997).

[16] U. Rauchschwalbe et al., J. Magn. Magn. Mater. 63-64, 347 (1987).

[17] H.Nakamura, Y.Kitaoka, H.Yamada and K.Asayama, J. Magn. Magn. Mater. 76-77, 517 (1988).

[18] Y. Kitaoka, H. Tou, G.-q. Zheng, K. Ishida, K. Asayama, T.C. Kobayashi, A. Kohda, N. Takeshita,
K. Amaya, Y. Onuki, G. Geibel, C. Schank and F. Steglich, Physica B 206-207, 55 (1995).

[19] Y. J. Uemura et al., Phys. Rev. B 39, 4726 (1989); G.M.Luke et al., Phys. Rev. Lett. 59, 1853
(1994).

[20] G. Bruls, B. Wolf, D. Finsterbusch, P. Thalmeier, I. Kouroudis, W. Sun, W. Assmus, and B. Luthi,
Phys. Rev. Lett. 72, 1754 (1994).

129



130 BIBLIOGRAPHY

[21] F. Steglich et al., J. Phys. Cond. Matter. 8, 9909 (1996).

[22] R. Modler et al., Physica B 206-207, 586 (1995).

[23] P. Gegenwart et al., Phys. Rev. Lett. 81, 1501 (1998).

[24] K. Ishida et al, Phys. Rev. Lett. 82, 5353 (1999).

[25] M.Hunt, P.Messon, P.A.Probst, P.Reinders, M.Springford, W.Assmus and W.Sun, J. Phys. Con-
dens. Matter. 2, 6859 (1990).

[26] M.Lang, R.Molder, U.Ahlheim, R.Helfrich, P.H.P.Reinders and F.Steglich, Phys. Scripta T39, 135
(1991).

[27] F.Thomas, J.Thomasson, C.Ayache, C.Geibel and F.Steglich, Physica B186-188, 303 (1993).

[28] B. Bogenberger and H. v. Lohneysen, Phys. Rev. Lett. 74, 1016 (1995).

[29] J.M. Effantin, J. Rossat-Mignod, P. Burlet, H. Bartholin, S. Kunii and T. Kasuya, J. Magn. Magn.
Mater. 47&48, 145 (1985).

[30] G. Uimin, Y. Kuramoto and N. Fukushima, Solid State Commun. 97, 595 (1996).

[31] N. Fukushima and Y. Kuramoto, J. Phys. Soc. Jpn. 67, 2460 (1998).

[32] F. Ohkawa, J. Phys. Soc. Jpn. 52, 3897 (1983).

[33] R. Shiina, H. Shiba and P. Thalmeier, J. Phys. Soc. Jpn. 67, 1741 (1997).

[34] M. Takigawa, H. Yasuoka, T. Tanaka and Y. Ishizawa, J. Phys. Soc. Jpn. 52, 728 (1983).

[35] O. Sakai, R. Shiina, H. Shiba and P. Thalmeier, J. Phys. Soc. Jpn. 66, 3005 (1997).

[36] T. Tayama, T. Sakakibara, K.Tenya, H. Amitsuka and S. Kunii, J. Phys. Soc. Jpn. 66, 2268 (1997).

[37] M. Hiroi, M. Sera, N. Kobayashi and S. Kunii, Phys. Rev. B55, 8339 (1997).

[38] S. Nakamura, O. Suzuki, T. Goto, S. Sakatsume, T. Matsumura and S. Kunii, J. Phys. Soc. Jpn.
66, 552 (1997).

[39] M. Kohgi, T. Osakabe, K. Ohyama and T. Suzuki, Physica B 213&214, 110 (1995).

[40] T. Suzuki, Physica B 186-189, 347 (1993).

[41] A. Ochiai et al, J. Phys. Soc. Jpn. 59, 4129 (1990)

[42] M. Kohgi et al., Physica B259-261 269 (1999).

[43] P. Fulde, B. Schmidt and P. Thalmeier, Europhys. Lett., 31 323 (1995).

[44] Y. Kuramoto, Physica B156&157, 789 (1989).

[45] Y. Kuramoto and K. Miyake, J. Phys. Soc. Jpn. 59, 2831 (1990).

[46] T. Koyama and M. Tachiki, Prog. Theor. Phys. Suppl. 80, 108 (1984).

[47] Y. Kuramoto and E. Mueller-Hartmann, J. Magn. & Magn. Mater. 52, 122 (1985).

[48] O. Sakai, Y. Shimizu and T. Kasuya, J. Phys. Soc. Jpn. 58, 3666 (1989).

[49] K. Miyake and Y. Kuramoto, J. Magn. & Magn. Mater. 90&91, 438 (1990).

[50] M. Takashima et al., J. Phys. Soc. Jpn. 65, 515 (1996).

[51] A. de Visser et al., Physica B171, 190 (1991).

[52] T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism, (Springer, Berlin, 1985).

[53] G. Aeppli et al., Phys. Rev. Lett. 60, 615 (1988).



Chapter 5

Superconducting States

5.1 Historical Overview

Superconductivity, which was one the best understood many-body problems in physics[1], became again
a challenging problem when a new kind of superconductivity was discovered in CeCu2Si2 by Steglich et
al [2]. The system is one of heavy-electron materials close to magnetic instability. In the subsequent
decade, intensive investigations of a class of uranium compounds established a new field of heavy-
electron superconductivity by successive discoveries of superconductivity in UBe13, UPt3, URu2Si2,
UPd2Al3 and UNi2Al3 [3, 4]. The most important characteristics for a series of uranium heavy-electron
superconductors are that superconductivity coexists with the antiferromagnetism except for UBe13, and
that the specific heat coefficient γ lies in a broad range from 700 mJ/(mole K2) (UBe13) to 60 mJ/(mole
K2)(URu2Si2). The f -shell electrons, which are strongly correlated by Coulomb repulsive interaction,
determine the properties of heavy quasi-particles at the Fermi level. This gives rise to a large γ value as
well as an enhanced spin susceptibility. Hence, the Fermi energy is also quite small: TF = 10 ∼ 100K
and, as a result, the transition temperature is also small, ranging from Tc = 0.5K to 2K. The magnetic
ordering temperature TN = 5 ∼ 20K is by one order of magnitude higher than Tc. A jump (Cs−Cn)/Cn

of the specific heat normalized by the value Cn just above Tc is of O(1) in all compounds. This result
demonstrates that the superconductivity is produced mainly by the heavy quasi-particles. Due to the
strong Coulomb repulsion among f electrons, it seems hard for the heavy quasi-particles to form ordinary
s-wave Cooper pairs with large amplitude at zero separation of the pair. In order to avoid Coulomb
repulsion, the system would favor an anisotropic pairing channel like spin triplet p-wave or spin singlet
d-wave. These types of paired states are actually realized in superfluid 3He where pairings with p-wave
spin triplet are formed with a few phases of different symmetries such as A, A1 and B phases [5].

Ferromagnetic spin fluctuations (paramagnons) play a major part in the effective potential which
produces the anisotropic pairing. For example the pairing in the A-phase of 3He was identified as an
anisotropic type called the Anderson-Brinkman-Morel (ABM) state with the energy gap vanishing on
points at the Fermi surface [6]. In many respects, the analogy with 3He is a good guide for the inter-
pretation of the experimental results in heavy-electron superconductors. The on-site Coulomb repulsive
interaction produces AF spin fluctuations as a low-energy excitation, which play a role similar to ferro-
magnetic spin fluctuations in liquid 3He. There are, on the other hand, important differences between
these two systems. The strong correlation effect, the spin-orbit interaction, and the CEF characterize
the heavy-electron systems. Thus the problem of the heavy-electron superconductivity turns out to be
much more complicated than in 3He.

The heavy-electron superconductivity has also intimate connection to another new kind of super-
conductivity; the high-temperature superconductivity discovered in a copper-oxide La2−xBaxCuO4 by
Bednorz and Müller in 1986[7]. Intensive study of the class of copper oxides led to successive discov-
eries of new superconducting systems, each exceeding the other in Tc value: Y-Ba-Cu-O system with
Tc ∼ 90K, Bi-Sr-Ca-Cu-O system with Tc ∼ 110K, Tl-Ba-Ca-Cu-O system with Tc ∼ 120K and Hg-
Ba-Cu-O system with Tc ∼ 130K[8]. These new superconductors exhibit unconventional properties, and
there is increasing evidence that order parameter symmetry could be of the anisotropic dx2−y2 type. In
copper oxides AF spin fluctuation is considered to play a vital role in producing the anisotropic pairing
[9, 10]. Even if there is a difference of more than two orders of magnitude between the Tc’s in heavy-
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electron and high-Tc copper oxide superconductors, they share the common feature of strongly correlated
electrons in partially filled f - or d-shells. It is a common property of the anisotropic superconductivity
that low-lying excitations in the quasi-particle spectrum originate from the presence of zero gap either
on points or along a line at the Fermi surface. These zeroes give rise to a power-law temperature depen-
dence of various physical quantities instead of the exponential dependence seen in conventional s-wave
superconductors. We resume more detailed comparison in Chapter 6.

5.2 Fundamentals of Anisotropic Pairing

5.2.1 Symmetry of the pairing

spherical symmetry

Let us consider the symmetry property of the pairing. For simplicity we first assume spherical symmetry
in the system and neglect the spin-orbit interaction. The situation is approximately realized in superfluid
3He. In the case of heavy electrons, the effects of CEF and spin-orbit interaction are very important and
will be discussed later. For description of the symmetry we draw an analogy with the one-body density
matrix given by ραβ(k) = 〈aβ(k)†aα(k)〉 in k-space. This can be parametrized as

2ραβ(k) = n(k)δαβ + m(k) · σαβ(k), (5.1)

where n(k) is the occupation number and m(k) is the spin polarization. Here σ is the vector composed
of the Pauli matrices. The average magnetization 〈M(k)〉 is given by

〈M(k)〉 = −1
4
gµBTr[σρ(k)] = −1

2
gµBm(k), (5.2)

where g is the g-factor.
We now turn to the pairing amplitude Ψαβ(k) defined by

Ψαβ(k̂) = 〈aα(k)aβ(−k)〉, (5.3)

where we have assumed zero total momentum of the pair. Here k̂ denotes a unit vector in the direction
of k which is near the Fermi surface. Because of the small energy scale of superconductivity as compared
with the Fermi energy, we have neglected in Ψαβ(k̂) slight dependence on |k|. In order to make analogy
to the symmetry of the density matrix, we introduce the time reversal operator K acting on the single-
particle state φα with a spin component α as

〈rβ|Kφα〉 ≡ φβ(r)∗(iσy)βα, (5.4)

If φα(r) is an eigenstate of the single-particle Hamiltonian with a magnetic field, Kφα represents a
solution with reversed magnetic field. Equation (5.4) for spin 1/2 is an example of the more general
property of K as the product of a unitary operator and taking the complex conjugate of the wave
function. The appearance of the real unitary operator iσy here is connected with the property

iσyσ(iσy)−1 = −σ∗,

which means that the spin operator σ/2 is odd under time reversal.
The convenience of using iσy is clear from the identity for the singlet pair creator:

a†
↑(k)a†

↓(−k) − a†
↓(k)a†

↑(−k) =
∑
αβ

a†
α(k)(iσy)αβa†

β(−k),

where both sides transform as a scalar. On the other hand, the triplet pair with Sz = 1 is given by

a†
↑(k)a†

↑(−k) =
1
2

∑
αβ

a†
α(k)[(σx + iσy)iσy]αβa†

β(−k).

It can easily be checked that the triplet pair with Sz = −1 obtains (σx − iσy) instead of (σx + iσy) in
the above, and the pair with Sz = 0 obtains 2σz instead. Thus we parametrize the pairing amplitude as

Ψαβ(k̂) = {[Ψs(k̂) + Ψt(k̂) · σ]iσy}αβ , (5.5)
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where Ψs(k̂) describes the singlet part and the vector Ψt(k̂) describes the triplet one. In the case of
s-wave pairing, Ψs(k̂) is just a constant. With finite angular momentum l, it is expanded in terms of
spherical harmonics as

Ψs(k̂) =
∑
m

cmYlm(k̂).

On the other hand, for the triplet pair with Sz = 0, for example, we obtain

Ψt(k̂) = ẑf(k̂), (5.6)

where ẑ is the unit vector along the z axis and f(k̂) specifies the orbital degrees of freedom. The latter
is expanded in terms of spherical harmonics as the singlet pairing. In the case of Sz = ±1, ẑ is replaced
by x̂± iŷ. Fermi statistics require that Ψs(k̂) is an even function of k̂ and Ψt(k̂) is odd. These types of
pairing do not occur at the same time.

Let us introduce the gap function ∆αβ(k̂) which is related to the pairing amplitude by

∆αβ(k̂) =
∑
µν

∑
p

〈αβ|V (k,p)|νµ〉Ψµν(p̂).

Here 〈αβ|V (k,p)|νµ〉 is the matrix element of the pairing interaction. As before the convention |αβ〉† =
〈βα| is taken in ordering the one-particle states. Then we parametrize

∆αβ(k̂) = {[D(k̂) + d(k̂) · σ]iσy}αβ (5.7)

The quantity D(k̂) and d(k̂) have the same transformation properties as Ψs(k̂) and Ψt(k̂), respectively.
In contrast to n(k̂) and m(k̂) in the density matrix, the gap function need not be real. This is associated
with the gauge symmetry spontaneously broken in the superconducting phase.

In addition to gauge symmetry, other symmetries like spherical symmetry and time reversal can be
broken. In order to deal with a general case we introduce [11] the four component field ψi(k) (i = 1, 2, 3, 4)
by the vector

ψ(k) = (a↑(k), a↓(k), a†
↑(−k), a†

↓(−k))t. (5.8)

We call the first and second components conjugate to each other. The third and the fourth components
are also conjugate partners, while the first and the fourth, as well as the second and the third, are
time-reversal partners. The mean-field Hamiltonian is written as

H =
∑

k

∑
ij

hij(k)ψ†
i (k)ψj(k) =

∑
k

ψ†(k)ĥ(k)ψ(k),

where the 4 × 4 matrix ĥ = {hij} is given by

ĥ(k) =

(
ϵk ∆(k̂)

∆(k̂)† −ϵ−k

)
. (5.9)

Here the entries in the right hand side are 2 × 2 matrices.
The eigenvalues of ĥ(k) are most easily obtained by taking the square of it. Then we get

ĥ(k)2 =

(
ϵ2k + ∆∆† 0

0 ϵ2k + ∆†∆,

)
. (5.10)

where
∆∆† = |D|2 + |d|2 + w · σ, ∆†∆ = |D|2 + |d|2 − w · σ,

with w = id × d∗ = w∗. One calls the pairing with w = 0 unitary and the other case non-unitary.
We diagonalize the 2 × 2 submatrices in eq.(5.10) and obtain the quasi-particle spectrum as

Eτσ(k) = τ

√
ϵ(k)2 + |D(k̂)|2 + |d(k̂)|2 + σ|w(k̂)|,

where τ = ±1 specifies the orbital (or the particle-hole) branch and σ = ±1 the spin branch. In the non-
unitary case the spin degeneracy is removed, which means that time-reversal symmetry is spontaneously
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broken. The superconducting gap vanishes at k such that |d(k̂)|2 − |w(k̂)| = 0 in the triplet case, and
|D(k̂)|2 = 0 in the singlet case. In the non-unitary case the gap may open only in one spin branch.

In the case of superfluid 3He, the following types of p-wave pairing have been considered:

d(k̂) ∝
 x̂kx + ŷky + ẑkz, [BW]

ẑ(kx + iky), [ABM]
ẑkz, [polar].

(5.11)

Here and in the following we write k̂α (α = x, y, z) simply as kα for notational simplicity. The first pairing
type corresponds to vanishing total angular momentum, namely J = L+S = 0, and is called the Balian-
Werthamer (BW) state [11]. The BW state has no node. The second one, with Sz = 0 and Lz = 1,
is realized in a narrow range of the phase diagram and is called the Anderson-Brinkman-Morel (ABM)
state [12]. The ABM state has a point node at kx = ky = 0. The third one with Sz = Lz = 0 is called
the polar state which has a line node at kz = 0. It is noted that spherical symmetry is spontaneously
broken in the ABM and polar states.

singlet pairing under tetragonal symmetry

In the presence of a periodic potential, the degeneracy associated with a finite angular momentum of
the pair is lifted. The pair should instead be labeled by an irreducible representation of the point group
[13, 14, 15]. As long as the deviation from spherical symmetry is small, one can still use terminology such
as the s-wave or p-wave pairing. Under strong crystal potential, however, wave functions with different
angular momenta are mixed. Then labeling by the angular momentum loses its significance. Let us take
as an example tetragonal symmetry. The simplest pairing has Γ+

1 (A1g) symmetry represented by

D0(k̂) = a + b(k2
x + k2

y) + ck2
z + . . . , (5.12)

where a, b, c, . . . are parameters to be determined on energetic grounds. Here a originates from the s-
wave, b and c from the d-wave and so on. One has |a| ≫ |b|, |c| if the pairing is predominantly of s-wave
character. The function D0(k̂) transforms as a scalar under the point-group operation, and obviously
there are no nodes.

Another type of the singlet pairing has the Γ+
3 (B1g) symmetry and is represented by

D1(k̂) = (k2
x − k2

y)f0(k̂) = Rek2
+f0(k̂),

where k+ = kx + iky and f0(k̂) is a scalar function which is in general different from D0(k̂) in eq.(5.12).
The function D1(k̂) vanishes on the planes kx = ±ky. Therefore along the intersection of the plane with
the Fermi surface, which makes a line, the gap vanishes.

The pairing symmetry Γ+
5 (Eg) belongs to a two-dimensional representation where the Cooper pair

has an internal degree of freedom like finite angular momentum. The gap function is given by

D2(k̂) = (η1kx + η2ky)kz[f0(k̂) + k2
zf1(k̂)],

The coefficients η1, η2 are arbitrary in contrast to the case of eq.(5.12). On the other hand the scalar
functions f0(k̂) and f1(k̂) are completely determined by minimizing the energy. Again the gap vanishes
on the line kz = 0.

The list including other representations is given in Table 5.1(a). We notice that all the basis functions
in these tables should be multiplied by a scalar function which depends on each irreducible representation.

triplet pairing under tetragonal symmetry

We now turn to triplet pairing. The simplest pairing has Γ−
1 (A1u) symmetry represented by

d(k̂) = ẑkzf0(k̂) + (x̂kx + ŷky)f1(k̂) + (x̂kx − ŷky)(k2
x − k2

y)f2(k̂)

= ẑkzf0(k̂) + (Rek+r̂−)f1(k̂) + (Rek3
+r̂+)f2(k̂), (5.13)

where x̂ denotes the unit vector along the x-axis and r̂± = x̂± iŷ. The scalar functions fi(k̂) (i = 0, 1, 2)
are to be determined to minimize the energy. There is no node because f0f1f2 ̸= 0 in general. If, however,
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(a) singlet pairing
representation basis functions

Γ+
1 (A1g) 1

Γ+
2 (A2g) Imk4

+

Γ+
3 (B1g) Rek2

+

Γ+
4 (B2g) Imk2

+

Γ+
5 (Eg) kzk±; kzk

3
±

(b) triplet pairing
representation basis functions

Γ−
1 (A1u) ẑkz; Rek+r̂−; Rek3

+r̂+

Γ−
2 (A2u) Imk+r̂−; Imk3

+r̂+; kzImk4
+ẑ

Γ−
3 (B1u) Rek+r̂+; kzRek2

+ẑ; Rek3
+r̂−

Γ−
4 (B2u) Imk+r̂+; kzImk2

+ẑ; Imk3
+r̂−

Γ−
5 (Eu) kn+1

± ẑ; kzk
n
±r̂±; kzk

n+2
± r̂∓ (n = 0; 2)

Table 5.1: Pairing basis functions in tetragonal symmetry D4h. The functions separated by a semicolon
are to be taken as linear combinations to minimize the energy. The functions with the suffix ± or ∓
denote degenerate partners.

there is a spontaneous breakdown of symmetry to realize Sz = 0, for example, we have f1 = f2 = 0 and
a line node appears at kz = 0.

The other simple symmetry is Γ−
3 (B1u) with

d(k) = (x̂kx − ŷky)f0(k̂) = (Rek+r̂+)f0(k̂),

which has zeroes at kx = ky = 0. The list including other representations is given in Table 5.1 (b). We
quote also all basis functions for hexagonal and cubic symmetries [15] in Tables 5.2 to 5.3.

5.2.2 Effect of spin-orbit interaction

In the presence of the spin-orbit interaction, the Bloch function is specified by a pair of indices: the crystal
momentum k and the quasi-spin index σ, which reduces to the pure spin as the spin-orbit interaction
decreases. The energy level for each k is doubly degenerate as long as the time reversal symmetry is
not broken. We call the degenerate states a conjugate pair. Since the choice of the quasi-spin is not
unique, it is convenient to formulate the theory so that the symmetry appears independently of the
representation [16]. We shall illustrate this for the case with the Zeeman splitting. We introduce the
g-tensor ĝ(k) = {gij(k)} and a vector γ(k), which describes the magnetic moment, by the relation

γi(k) =
1
2

∑
j

gij(k)σj , (5.14)

where each component γi(k) is a matrix. Then the magnetic moment operator M(k) is given by

M(k) = −µB

∑
αβ

aα(k)†γαβ(k)aβ(k). (5.15)

Under the crystal symmetry operation, M(k) transforms like a vector and is independent of the choice
of basis. With the one-body density matrix parametrized by eq.(5.1) we obtain the magnetization

〈M(k)〉 = −µBTr[γ(k)ρ(k)] = −1
2
µB ĝ(k)m(k).

The Zeeman splitting 2EZ(k) is given by the eigenvalues ±EZ(k) of the Hermitian matrix

−M(k) · H.

We obtain from eqs.(5.14) and (5.15)

EZ(k)2 =
1
4
µ2

BH · Ĝ(k)H,
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(a) singlet pairing
representation basis functions

Γ+
1 (A1g) 1

Γ+
2 (A2g) Imk6

+

Γ+
3 (B1g) kzImk+d3

Γ+
4 (B2g) kzRek3

+

Γ+
5 (E1g) kzk±; kzk

5
∓

Γ+
6 (E2g) k2

±; k4
∓

(b) triplet pairing
representation basis functions

Γ−
1 (A1u) ẑkz; Rek+r̂−; Rek5

+r̂−
Γ−

2 (A2u) Imk+r̂−; Imk5
+r̂−; kzImk6

+ẑ
Γ−

3 (B1u) Imk3
+r̂−; kzImk2

+r̂+; kzImk4
+ẑ

Γ−
4 (B2u) Rek3

+r̂−; kzRek2
+r̂+; kzRek4

+ẑ
Γ−

5 (E1u) k±ẑ; kz r̂±; kzk
2
±r̂∓; k5

∓ẑ; kzk
4
±r̂∓; kzk

6
∓r̂±

Γ−
6 (E2u) k±r̂±; kzk

2
±ẑ; k3

±r̂∓; k3
∓r̂∓; k5

∓r̂±; kzk
4
∓ẑ

Table 5.2: Basis functions for the pair in the hexagonal symmetry D6h.

(a) singlet pairing
representation basis functions

Γ+
1 (A1g) 1

Γ+
2 (A2g) (k2

x − k2
y)(k2

y − k2
z)(k2

z − k2
x)

Γ+
3 (Eg) 2kn

z − kn
x − kn

y , kn
x − kn

y (n = 2; 4)
Γ+

4 (T1g) kykz(kn
y − kn

z ), kzkx(kn
z − kn

x ), kxky(kn
x − kn

y ) (n = 2; 4; 6)
Γ+

5 (T2g) kykzk
n
x , kzkxkn

y , kxkykn
z (n = 0; 2; 4)

(b) triplet pairing
representation basis functions

Γ−
1 (A1u) x̂kn

x + ŷkn
y + ẑkn

z (n = 1; 3; 5)
Γ−

2 (A2u) x̂kn
x (k2

y − k2
z) + ŷkn

y (k2
z − k2

x) + ẑkn
z (k2

x − k2
y) (n = 1; 3; 5)

Γ−
3 (Eu) x̂kn

x + ŷkn
y − 2ẑkn

z , x̂kn
x − ŷkn

y (n = 1; 3; 5)
(kn

x − kn
y )d̂BW , (2kn

z − kn
x − kn

y )d̂BW (n = 1; 3; 5)
(k5

xk2
z x̂ + k2

xk5
z ẑ) + (x ↔ y), [k5

x(k2
z − 2k2

y)x̂ + k2
xk5

z ẑ] + (x ↔ y)
Γ−

4 (T1u) km
x (ŷkn

z − ẑkn
y ), km

y (ẑkn
x − x̂kn

z ), km
z (x̂kn

y − ŷkn
x ) (m = 0; 2, n = 1; 3; 5)

kxky(k2
x − k2

y)kn
z ẑ, kykz(k2

y − k2
z)kn

x x̂, kzkx(k2
z − k2

x)kn
y ŷ (n = 1; 3; 5)

Table 5.3: Basis functions for the pair in the cubic symmetry Oh. Functions separated by a comma
represent degenerate partners, and d̂BW = kxx̂+ky ŷ+kz ẑ. The semicolons mean that linear combinations
are to be taken of terms with different n’s indicated in each parenthesis.



5.2. FUNDAMENTALS OF ANISOTROPIC PAIRING 137

where Ĝ(k) = ĝ(k)ĝ(k)t with t denoting the transpose. Note that this result is independent of the choice
of basis. The gap function is now parametrized by

∆αβ(k̂) = {[D(k̂) + d(k̂) · γ(k̂)]iσy}αβ . (5.16)

Then we get
∆∆† = |D(k̂)|2 + (d · γ)(γ · d∗) = |D(k̂)|2 + |dg|2 + w · σ,

where dg = ĝtd and w = idg × d∗
g = w∗. The symmetry property of dg(k̂) is the same as that of d(k̂).

Thus the energy spectrum in the presence of the spin-orbit interaction is obtained just by using dg(k̂)
in place of d(k̂) in the previous section.

It has been argued that the triplet in general cannot have line nodes [16]. The main line of argument
for this is the following: The gap vanishes if an eigenvalue of the matrix {hij(k)} is given by ±ϵ(k).
Namely we require

det{∆αβ(k̂)} = D(k̂)2 − dg(k̂) · dg(k̂) = 0. (5.17)

In the singlet case, D(k̂) can be made real. Then the zero condition specifies a plane in the k-space, and
the intersection with the Fermi surface constitutes the line node. For the unitary triplet case, dg(k̂) can
also be made real. Then the left-hand side of eq.(5.17) is the sum of three non-negative quantities. If
these quantities are independent, there is no solution on the Fermi surface. If the number of independent
equations is reduced to two by symmetry, then a point zero is realized. In order to have a line node, there
must be only one independent equation. This however cannot be expected from the symmetry alone.
In the non-unitary case dg(k̂) is a complex vector, and eq.(5.17) leads to two real equations. Therefore
some special situation is also necessary in order to have line nodes in the non-unitary triplet pairing.

A candidate realizing such situation is the pair with a definite direction of dg(k̂) as in the case of the
polar state of eq.(5.11). Under hexagonal symmetry, for example, the E1u pair with Sz = ±1 of the
quasi-spin always contains a factor kz as seen from Table 5.2. The same remark applies also to the E2u

pair with Sz = 0. These pairs with line nodes are suggested for pairing in UPt3 as will be explained
later.

5.2.3 Density of states of quasi-particles

In the superconducting state, the energy of quasi-particles is given as the eigenvalues of ĥ = {hij} given
by eq.(5.9). The density of states N(E) of quasi-particles is then

N(E) =
1
2

∑
kτσ

δ(E − Eτσ(k)) = |E|
∑
kσ

δ(E2 − E2
kσ

), (5.18)

where Ekσ = |Eτσ(k)|. By putting the eigenvalues of ĥ(k)2 we can derive the density of states. For
simplicity we first treat cases with spherical symmetry.

s-wave pairing

In BCS superconductivity mediated by the electron-phonon interaction [1] the energy gap opens over the
entire Fermi surface. With the notation D(k̂) = ∆, the density of states NBCS(E) in the superconducting
state is given by

NBCS(E) = N0
|E|√

E2 − ∆2
, (|E| > ∆) (5.19)

and NBCS(E) = 0 for |E| < ∆. Here N0 = 2
∑

k δ(ϵk) is the density of states at the Fermi level in the
normal state. Therefore, various physical quantities obey an exponential-law well below Tc.

p-wave pairing

In the case of a p-wave triplet pairing we obtain

N(E) = N0

∫
dΩ
8π

∑
σ=±1

Re
|E|√

E2 − |d(k̂)|2 − σ|w(k̂)|
, (5.20)
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where the integral is over the solid angle of k̂. In the ABM state in the superfluid 3He-A, the Cooper pair
consists of parallel spin pairing as given by eq.(5.11). Then we have |d(k̂)|2 = ∆2 sin2 θ and w(k̂) = 0.
Correspondingly, the quasi-particle density of states in the ABM state is given by

NABM (E) =
N0|E|

4π

∫ 2π

0

dφ

∫ π

0

dθ Re
sin θ√

E2 − ∆2 sin2 θ
=

N0E

2∆
ln | E + ∆

E − ∆
|. (5.21)

This result is obtained by choosing x = ∆cos θ/
√

E2 − ∆2 as the integration variable for the case of
|E| > ∆. The result in the case of |E| < ∆ is obtained by analytic continuation of E. Hence eq.(5.21)
is valid for both cases. We note that NABM (E) exhibits a divergence at the gap edge, which is weaker
than the BCS case, and is proportional to E2 at low energy as shown in Fig.5.1.

In the case of the p-wave polar type with d(k̂) = ∆ẑkz, the gap vanishes along a line at the Fermi
surface. Accordingly we have

Npolar(E) =
1
2
N0|E|

∫ π

0

dθ Re
sin θ√

E2 − ∆2 cos2 θ
=

{
πN0|E|/(2∆), (|E| < ∆)
N0(E/∆)arcsin(∆/E). (|E| > ∆) (5.22)

This result is obtained with x = ∆ cos θ/|E| taken as the integration variable. In this case, Npolar(E) is
finite at the gap edge and is proportional to |E| at low energy. In the triplet BW [11] state realized in
the superfluid 3He-B phase, the density of states is the same as the BCS state since the energy gap is
isotropic. These results are summarized in Figure 5.1.

Figure 5.1: Quasi-particle density of states in the superconducting phase, (a) s-wave, (b) axial (ABM)
p-wave with vanishing gap at points and (c) polar p-wave with vanishing gap along a line.

5.3 NMR as a Probe of Superconducting States

5.3.1 Knight shift

The Knight shift is the only convenient measure of the local spin susceptibility reflecting the symmetry of
the order parameter, since the diamagnetic shielding by supercurrents overwhelms all other contributions
to the bulk susceptibility. In the presence of a weak magnetic field H along the z axis, the itinerant part
of the magnetization Mz is given by

Mz = −1
2
gµB

∑
k

[f(Ek↑) − f(Ek↓)] (5.23)

where f(Ekσ
) is the Fermi distribution function for a quasi-particle with a spin-dependent energy Ekσ

.
We derive the spin susceptibility χs for various cases.
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s-wave pairing

In the case of s-wave singlet pairing we obtain Ekσ = Ek + σh with h = gµBH/2. Then χs for the
s-wave is derived [17] with use of NBCS(E) in eq.(5.19),as

χs =
1
4
(gµB)2

∫ ∞

−∞
NBCS(E)

(
− df

dE

)
dE (5.24)

This result is plotted in Fig.5.2. At low-T , χs decreases exponentially as exp (−∆/T ). In the d-wave,
since Nd(E) is proportional to the energy E, or its square (∝ E2), χs becomes zero in proportion to T
or T 2 respectively, at low T .

The argument above is valid only in the clean limit where the transport mean free path, ltr is larger
than the superconducting coherence length ξ, i.e. ∆ > 1/τ . Here the scattering time τ is defined by
ltr = vF τ . In the case where a strong spin-orbit scattering (λL · S) with λ ≫ ∆ occurs by the presence

Figure 5.2: Temperature dependence of Knight shift in s-wave superconductors as given by eq.(5.24). In
actual materials there remains residual shift due to the spin-orbit interaction.

of imperfections and the boundary in small particles, those states which would be different eigenstates
in the absence of the spin-orbit interaction can be admixed. This is time-reversal invariant so that the
new eigenstates can retain the same pairing in the superconducting state as in the absence of spin-orbit
scattering. However, these eigenstates contain admixtures of both up and down spin directions. As a
result, a conventional picture of spin-singlet pairing no longer holds. In the limit of large spin-orbit
interaction, the opening of a finite energy gap below Tc does not produce large perturbation on the spin
susceptibility. For the two limits of strong and weak spin-orbit scattering, Anderson derived the fraction
of the residual spin susceptibility at T=0 as [18]

χs/χn ≅ 1 − 2∆τso ξ ≫ lso

χs/χn ≅ (6∆τso)−1 ξ ≪ lso

where τso is the mean time between spin-reversing scattering events and the spin-orbit mean free path
is defined by lso = vF τso.

p-wave pairing

In the p-wave case, the susceptibility depends on the direction of d. Let us first consider the case where
d ∥ ẑ. Then in the matrix ĥ(k) we have no coupling between the conjugate partners. The non-zero off-
diagonal elements couple the time-reversal partners. Then the Zeeman splitting of quasi-particle states
becomes the same as the s-wave case, i.e., Ekσ

= Ek + σh. Thus χs is given by eq.(5.24) provided that
NBCS(E) is replaced by the triplet one.
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If d ⊥ ẑ, on the other hand, the spin is parallel to the magnetic field. We assume the case of equal-spin
pairing with d(k̂) = ∆x̂k+. Then in the matrix ĥ(k) we again have no coupling between the conjugates.
This time the non-zero off-diagonal elements couple components with equal spin. We obtain

E2
kσ

= (ϵk + σh)2 − ∆2 sin2 θ,

which leads to
∂Ekσ

∂H
=

1
2
µBσ

∂Ekσ

∂ϵk
.

Then χs is given by

χs =
∑
kσ

∂

∂H
[f(Ekσ)

∂Ekσ

∂H
] = −1

4
(gµB)2N0

∫ ∞

−∞
dϵ

∂

∂ϵ
[f(Eϵ)

∂Eϵ

∂ϵ
] =

1
4
(gµB)2N0. (5.25)

Namely the spin susceptibility remains the same as that in the normal state.
If one can neglect the anisotropy in the system as in liquid 3He, d can rotate so that d ⊥ ẑ is satisfied.

Then χs stays constant in any direction in the parallel spin pairing (ABM) state. On the contrary
provided that the spin is pinned along an easy axis or an easy plane due to the anisotropy below Tc, χs

with H perpendicular to such axis or plane is reduced. In the isotropic triplet state (BW state), χs is
decreased down to 2/3 of the value in the normal state. This is interpreted as coming from the average
|dz|2 of the component parallel to H is 1/3 of |d|2 in the BW state. Thus the Knight shift measurement
provides an important clue for the determination of the symmetry of the order parameter.

5.3.2 Nuclear-spin-lattice relaxation rate

A modification of the excited state spectrum by the onset of superconductivity has a substantial effect
on the temperature dependence of the NMR relaxation rate 1/T1. The dynamical response of the excited
states is also affected by the presence of the mixed state, or magnetic and non-magnetic impurities. All
these effects can be probed by the nuclear relaxation study.

At finite temperature some pairs are broken up into single-particle excitations, while the presence of
the coherent condensed state modifies the matrix element of external perturbations. This latter effect
is called a coherence effect. Since the nuclear relaxation in the superconducting state is significantly
affected by the coherence effect, NMR serves as a good probe of coherence. We consider a case where
the magnetic field is along the z axis and we have axial symmetry in the x-y plane. Then by eqs.(1.129)
and (1.130) we have

1
T1T

= A2
⊥(gJµB)2

∑
q

1
ωn

Imχ⊥(q, ωn). (5.26)

where A⊥ is the momentum average of the hyperfine interaction. The transverse dynamical susceptibility
is derived in the mean-field approximation in the superconducting state. As χ⊥ we consider the y-
component. We note ∑

k,p

∑
αβ

a†
kα

(σy)αβapβ =
1
2

∑
k,p

ψ(k)†
(

σy 0
0 σy

)
ψ(p), (5.27)

where ψ(p) is the four-component field given by eq.(5.8). The 4 × 4 matrix in eq.(5.27) is written as
σ̂y = σy ⊗ τ0 where τ0 is the 2× 2 unit matrix. By evaluating the zero-th order polarization part in the
Green function formalism we obtain

Imχyy(q, ω) =
∑
k,p

∫ ∞

−∞
dϵ[f(ϵ) − f(ϵ + ω)]Tr[σ̂yδ(ϵ − ĥ(k))σ̂yδ(ϵ + ω − ĥ(p))], (5.28)

where the delta function corresponds to the imaginary part of the retarded Green function of the 4-
component field. In the unitary case to which we restrict ourselves from now on, the latter is given
by

− 1
π

Im[ϵ − ĥ(k) + iδ]−1 =
1
2

(
1 +

ĥ(k)
Ek

)
δ(ϵ − Ek) +

1
2

(
1 − ĥ(k)

Ek

)
δ(ϵ + Ek), (5.29)
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where we have used the fact that ĥ(k)2 is proportional to a unit matrix given by E2
kσ0 ⊗ τ0.

We divide ĥ(k) into the diagonal part ĥ0(k) = ϵkσ0 ⊗ τz and the rest ĥ1(k) which depends on the
pairing type. Each case is discussed in the following.

s-wave pairing

In this case we have σ̂yĥ(k) = ĥ(k)σ̂y. Then the trace in eq.(5.28) is calculated as(
1 +

ϵkϵp + D(k̂)D(p̂)
EkEp

)[
δ(ϵ − Ek)δ(ϵ + ω − Ep) + δ(ϵ + Ek)δ(ϵ + ω + Ep)

]
, (5.30)

where the factor in front of the delta functions is an example of the coherence factor. We note that
summation over k makes the term with ϵk vanish because it is an odd function of ϵk. Then for the
s-wave pairing we obtain

1
T1T

= πA2

∫ ∞

0

dE

(
1 +

∆2

E2

)
NBCS(E)2

(
− ∂f

∂E

)
, (5.31)

where ω ≪ T is assumed. The density of states, NBCS(E) diverges at E = ∆ as shown in Fig.5.1. Near
Tc, where |f ′(∆)| is still large, the divergence of NBCS(E) gives rise to a divergence of 1/T1. However,
the life-time effect of quasi-particles by the electron-phonon and/or the electron-electron interactions,
and the anisotropy of the energy gap due to the crystal structure broadens the quasi-particle density of
states. This results in the suppression of the divergence of 1/T1. Instead, a peak of 1/T1 is seen just
below Tc. This peak, which is characteristic of singlet pairing, was observed first by Hebel and Slichter
[19] in the nuclear relaxation rate of Al, and is called the coherence peak. At low temperatures, 1/T1

decreases exponentially due to the uniform gap.
The coherence peak is not always seen in the case of strong-coupling superconductors. As an example

of the relaxation behavior for weak and strong coupling s-wave superconductors, Fig.5.3 shows 1/T1 of
119Sn and 205Tl in the Chevrel phase superconductors, Sn1.1Mo6Se7.5 and TlMo6Se7.5with Tc=4.2 K
and Tc=12.2 K, respectively [20]. In the normal state, the T1T=constant law holds for both compounds.
In the superconducting state, 1/T1 of 119Sn in Sn1.1Mo6Se7.5 has a coherence peak just below Tc and
decreases exponentially with 2∆ = 3.6kBTc, while 1/T1 of 205Tl in the strong coupling superconductor
TlMo6Se7.5 has no coherence peak just below Tc and decreases exponentially over five orders of magnitude
below 0.8Tc (10 K) with 2∆ = 4.5kBTc. Even though the coherence peak is depressed, the s-wave picture
is evidenced by the exponential decrease of 1/T1 below Tc. Figure 5.3 also shows another important
example, the high-Tc cuprates, which are discussed in the next Chapter.

p-wave pairing

In the p-wave case the coherence factor for Imχyy is calculated from eq.(5.30) as [11]

1 +
1

EkEp
Re

(
ϵkϵp + d(k̂) · d(p̂)∗ − 2dy(k̂)dy(p̂)∗

)
. (5.32)

Because ϵk and d(k̂) are odd functions of k̂, the bilinear terms in them vanish by summation over k.
Then the coherence factor is reduced to unity. The same situation occurs in the case of Imχxx. Therefore,
the relaxation rate is obtained by replacing the quasi-particle density of states in eq.(5.31) by NABM (E)
as follows:

1
T1T

=
πA2N2

0

4∆2

∫ ∞

0

E2

(
ln | E + ∆

E − ∆
|
)2

(− ∂f

∂E
)dE (5.33)

Since the divergence of NABM (E) at E = ∆ is weak, the peak of 1/T1 just below Tc is much smaller
than the BCS case. The larger ∆0/Tc is, where ∆0 is the gap at zero temperature, the more suppressed
is the peak of 1/T1. At low temperatures T ≪ Tc, we obtain

1
T1

∝
∫ ∞

0

E4 exp (−E

T
)dE = T 5Γ(5) (5.34)

which gives the T 5 dependence at low T .
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Figure 5.3: Temperature dependence of 1/T1 of 205Tl and 119Sn in strong coupling (TlMo6Se7.5)
and weak coupling (Sn1.1Mo6Se7.5) s-wave superconductors, and of 63Cu in YBa2Cu3O7 at zero
field. Solid lines above Tc represent the T1T=constant law, and below Tc the exponential law with
1/T1 = A exp (−∆/kBT ). For TlMo6Se8, the ratio 2∆/kBTc=4.5 is obtained and for SnMo6Se8 the
ratio is 3.6 [20].
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In the polar-type pairing where the gap vanishes along a line on the Fermi surface, 1/T1 is calculated
as

1
T1T

=
πA2N2

0

∆2

[
π2

4

∫ ∆

0

E2(− ∂f

∂E
)dE +

∫ ∞

∆

E2{arcsin (
∆
E

)}2(− ∂f

∂E
)dE

]
, (5.35)

where we use eq.(5.22) for Npolar(E). Since Npolar(E) remains finite at E = ∆, the peak of 1/T1 is
significantly suppressed. When ∆0/Tc is large, 1/T1 decreases rapidly just below Tc. At T ≪ Tc with
Npolar(E) ∝ E, 1/T1 is given by

1
T1

∝
∫ ∞

0

E2f(E)(1 − f(E))dE ∝ T 3. (5.36)

quadrupolar relaxation

We now consider the nuclear relaxation brought about by the interaction between the nuclear quadrupole
moment and the electric field gradient due to the non-spherical part of the conduction electron wave
function. The interaction is expressed by

HQ =
∑
kpσ

Bkpa†
kσ

apσ, (5.37)

which does not break time-reversal symmetry. If one replaces Bkp by an average, the relevant coupling
is written as ∑

k,p

∑
α

a†
kα

apα =
1
2

∑
k,p

ψ(k)†
(

σ0 0
0 −σ0

)
ψ(p), (5.38)

where we have neglected a contribution coming from anticommutation of fermion operators with k = p
because it is smaller by O(1/N). Then we obtain

1
T1T

= B2
∑
q

1
ω

Imχc(q, ω), (5.39)

where the charge susceptibility is given by

Imχc(q, ω) =
∑
k,p

∫ ∞

−∞
dϵ[f(ϵ) − f(ϵ + ω)]Tr[τ̂zδ(ϵ − ĥ(k))τ̂zδ(ϵ + ω − ĥ(p))], (5.40)

with τ̂z = σ0 ⊗ τz. The coherence factor for singlet pairing is now given by

1 +
ϵkϵp − ∆(k̂)∆(p̂)

EkEp
, (5.41)

where the minus sign originates from τ̂zĥ1(k) = −ĥ1(k)τ̂z. We note that the coherence factor (1−∆2/E2)
cancels the divergence of NBCS(E). Explicitly we have

1
T1T

= πB2

∫ ∞

−∞
dE

(
1 − ∆2

E2

)
NBCS(E)2

(
− ∂f

∂E

)
=

πB2N0

1 + exp(β∆)
. (5.42)

In this case the coherence peak just below Tc disappears. We note that the temperature dependence of
1/(T1T ) is the same as that of ultrasonic attenuation. These contrasting relaxation behaviors between
the magnetic and quadrupole processes were reported in the 119Sn and 181Ta relaxation in TaSn3[21].

As for the impurity effect on the relaxation behavior in conventional s-wave superconductors, we note
that non-magnetic impurities smear the anisotropy due to the crystal structure. Since the anisotropy has
an effect of suppressing the coherence peak just below Tc, such impurities enhance the peak. On the other
hand, magnetic impurities broaden the density of states by the pair-breaking effect, and substantially
suppress the peak of 1/T1. With increasing number of impurities, the superconductivity becomes gapless,
leading to the T1T=constant behavior below Tc. The magnetic field, which lowers Tc, also depresses the
peak.
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5.4 Characteristic Features of Heavy-Electron Superconductiv-
ity

The heavy-electron superconductors discovered to date may be classified into two groups depending on
their different magnetic behaviors and extent of quasi-particle renormalization. The first group comprises
CeCu2Si2, UBe13, and UPt3, which exhibit weak or no magnetic order. The quasi-particle masses as
derived from the specific-heat coefficient γ = C(T )/T are as large as γ ≥ 0.4 J/mole K2.

The second group includes URu2Si2, UNi2Al3 and UPd2Al3, which show antiferromagnetic order. The
effective masses are not so large with γ ∼ 0.1 J/mole K2, but Tc of 1-2 K are higher than that in the
first group. The highest Tc is 2 K in UPd2Al3. Most remarkably, UNi2Al3 and UPd2Al3 possess sizable
magnetic moments of 0.24 and 0.85 µB/(U atom), respectively. In both groups, heavy quasi-particles
are responsible for the superconductivity. This follows from the large jump of the specific heat ∆C at Tc

with ∆C/γTc ∼ 1, which is close to the value 1.43 for conventional superconductors, and from the large
slope of the upper critical field (dHc2/dT )T=Tc . The multiplicity of the superconducting phases in UPt3
is analogous to the complex phase diagram of superfluid 3He. This suggests the unconventional nature of
the superconductivity. We focus on selected properties studied by the NMR and the neutron scattering
experiments. We should mention that enormous amount of work has also been done on thermodynamic
and transport properties, which cannot be covered in the following.

5.4.1 CeCu2Si2

phase diagram under pressure

As discussed in Chapter 4, superconductivity in CeCu2Si2 occurs close to a mysterious magnetic phase
called the phase A. In order to gain further insight into the relationship between the magnetism and
superconductivity, we show the pressure and temperature (P −T ) phase diagram in Fig.5.4 for CeCu2Si2
and CeCu2Ge2 [22, 23, 24]. The heavy-electron antiferromagnet CeCu2Ge2 exhibits a pressure-induced
superconducting transition around P=7 GPa [22]. The phase diagrams show nearly identical pressure de-
pendence if they are transposed so that P=0 for CeCu2Si2 coincides with P=7.6 GPa for CeCu2Ge2[24].
The electronic state of CeCu2Ge2 at P=7.6 GPa seems nearly identical to that of CeCu2Si2 at P=0.
The enhancement of Tc observed for CeCu2Si2 in Fig.5.4 in a P -range of 2-3 GPa [23] is observed for
CeCu2Ge2 as well. Since application of pressure increases the hybridization between 4f - and conduction
electrons, there exists an optimum strength of hybridization for the superconductivity. Namely, as the
hybridization increases, the heavy-electron superconductivity emerges immediately after disappearance
of antiferromagnetic order.

Figure 5.4: Combined phase diagram for superconductivity and antiferromagnetism in CeCu2Si2 and
CeCu2Ge2 as a function of pressure. Normal and superconducting states for CeCu2Ge2 at 7 GPa bear
resemblance to those in CeCu2Si2 at ambient pressure [22, 23, 24].

Pressure-induced superconductivity is often seen in heavy electron systems when the AF order is
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suppressed under pressure. For example, close to the border of AF order, an unconventional normal-
state property is observed in the heavy-electron antiferromagnet CePd2Si2 (TN=10 K) which crystallizes
in the same tetragonal structure as CeCu2Si2. Near the critical pressure pc ∼ 30 kbar, at which the
AF ordering temperature is extrapolated to zero, the electrical resistivity, ρ(T ) exhibits a quasi-linear
variation over two orders of magnitude. This non-Fermi liquid form of ρ(T ) extends down to the onset
of the superconducting transition below 0.43 K [25].

Besides the series of CeM2X2 tetragonal compounds, the cubic stoichiometric AF compound CeIn3

displays an unusual normal-state resistivity followed by superconductivity around 0.2 K near pc ∼ 25 kbar
[26]. For the onset of superconductivity near the border of AF order, a possible scenario is that critical
low-lying magnetic excitations caused by the incipient AF order contribute to formation of anisotropic
even-parity Cooper pairs.

symmetry of the order parameter

The temperature dependence of the Knight shift provides a clue to the parity of the order parameter.
From the Knight shift measurements of 29Si and 63Cu, the spin susceptibilities parallel and perpendicular
to the tetragonal c-axis have been extracted with the use of oriented powder. From the T dependence
of the Knight shift, appreciable reduction of the spin susceptibility is found. This suggests strongly
the singlet nature of the order parameter, hence the even-parity superconductivity. The normalized T
dependence of the spin susceptibility in the superconducting state is plotted in Fig.5.5 against (T/Tc)
[27]. The residual shift at T=0 is attributed to the spin-orbit scattering and/or the T -independent Van
Vleck shift. Because of the residual shift, detailed structure of the gap function is hard to deduce from
the T dependence of the spin susceptibility.

Figure 5.5: Temperature dependence of spin susceptibility χs(T ) below Tc. This is deduced from the
Knight shift of 63Cu and 29Si in CeCu2Si2, and is normalized by the value at Tc [27].

As shown in Figure 4.8 [28], the T 3 law for x = 1.00 and 1.025 reveals that the gap function of
the order parameter vanishes along lines on the Fermi surface. Application of a simple model with
∆(θ) = ∆0 cos (θ) yields the best fit to the experiment with 2∆0 = 5Tc. Both Knight and T1 results
of CeCu2Si2 are consistent with a d-wave superconductor with vanishing gap along lines on the Fermi
surface. The specific heat C(T ), however, does not confirm the line node: Although C(T ) follows a T 2

dependence near Tc which is consistent with a line node, C(T ) goes like ∼ T 3 at low temperatures [29].

5.4.2 UPd2Al3

coexistence of AF order and superconductivity

The Néel temperature TN of UPd2Al3 is 14.5 K and the superconducting transition temperature Tc is 1.98
K [30, 31, 32]. Various measurements such as Al-NQR [33], Pd-NQR [34], specific heat [35] and neutron
diffraction [31] have established the coexistence of the AF magnetic order with the superconductivity
and no modification of the magnetic structure at the superconducting transition. Observation of the
T1T=constant law far below TN confirmed the quasi-particle excitations in the Fermi-liquid state, but
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spin waves were not found. Neutron scattering measurements, on the other hand, have probed spin-wave
excitations, which are reduced below Tc [31, 32]. Magnetic excitations develop a gap feature which seems
to be related to the anisotropic superconductivity [36]. These observation should constrain the theory
of superconductivity in the presence of well-developed antiferromagnetism, which has not been worked
out.

symmetry of order parameter

Figure 5.6 shows the T dependence of the Knight shift below Tc for polycrystalline and single crystalline
samples of UPd2Al3 [37]. In the µSR experiment similar results are also reported [38]. Reduction of

Figure 5.6: Temperature dependence of Knight shifts. Open circles show Knight shift perpendicular to
the field in oriented powder of UPd2Al3. Solid up-triangles denote the shifts with c-axis perpendicular
to the magnetic field, and down-triangles those parallel to the field. Solid lines represent the calculation
based on the d-wave model [37]. See text for the meaning of Ki and KAF .

the Knight shift is only about 0.08% ∼ 0.11% at 0.4 K for all directions. Since the sample is in the
clean limit, impurity scattering should not be the origin of the anisotropy in the residual Knight shift.
Therefore, the anisotropy in the residual Knight shift should be ascribed to that of the AF susceptibility
which does not change below Tc. This contribution is shown as KAF in Fig.5.6. If one subtracts KAF

from the total, the rest decreases nearly isotropically. The latter part is written as Ki and is ascribed
to the itinerant part forming Cooper pairs. The division of f -electron degrees of freedom into itinerant
and localized parts has been discussed in detail in 4.8

According to the Fermi liquid picture, a simple estimate of the itinerant part χi of the susceptibility
yields χi ∼ 1.6 × 10−3 emu/mole with γ=150 mJ/(mole·K2) in the normal state. On the other hand, a
polarized neutron experiment extracted a value χi ∼ 1.8 × 10−3 (emu/mole) as the itinerant part [31]
which is nearly the same as the above value. By using these values of χi, and the 27Al hyperfine coupling
constant Hhf=3.5 kOe/µB , the itinerant part Ki of the Knight shift is estimated from the formula:

Ki =
Hhf

(NAµB)
χi,

to be ∼ 0.1%. Since the observed reduction 0.08∼ 0.11% is comparable to Ki, the Knight shift due to
quasi-particles becomes almost zero well below Tc for all directions. This result provides strong evidence
that the superconductivity is due to singlet Cooper pairs in a clean limit.

gap anisotropy

In the superconducting state, 1/T1 in zero field obeys the T 3 law very well down to 0.15 K as seen in
Fig.5.7 [33]. This is the first case where the T 3 dependence of 1/T1 is observed down to such a low
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temperature as 0.08Tc. Since the order parameter stays constant below 0.5Tc, the T 3 law of 1/T1 in the
low T range of 0.5Tc(1 K)-0.08Tc(0.15 K) is evidence of anisotropic superconductivity with vanishing
gap along lines on the Fermi surface. It is noteworthy that at Al sites the T dependence of 27(1/T1)
below Tc is determined only by quasi-particle excitations in the superconducting state. This might be
partly because the magnetic form factor at the Al-site filters away the fluctuating hyperfine field from
two adjacent uranium planes. However, the T 3 law of 1/T1 was also confirmed for the Pd sites where
the fluctuating hyperfine fields in the basal uranium plane are not filtered away [34].

By contrast, the specific heat C(T ) probes not only quasi-particle excitations but also magnetic exci-
tations in the AF ordered state which coexists with the superconductivity. In fact C(T ) is not consistent
with the line-node [39]; it takes the form γrT + βT 3. It seems that the T linear term with γr=24
mJ/(mole·K2) well below Tc originates from gapless magnetic excitations localized at U sites.

In anisotropic superconductors, the impurity effect gives an important clue to identify the symmetry
of the order parameter. This is because even potential scattering causes the reduction of Tc in contrast
to the s-wave pairing. A slight inhomogeneity at the Al-site, which shows up in a larger FWHM, causes
a decrease of Tc from 2 K to 1.75 K and yields a residual density of states. Actually a T1T=constant
behavior was reported on a sample of UPd2Al3 which has lower Tc (=1.75 K) and larger FWHM=20
kHz than the standard sample with Tc=1.98 K and FWHM=12 kHz. Apparently, the T dependence
of 27(1/T1) can sensitively probe an intrinsic quasi-particle excitation near the Fermi level. The rate
R of Tc reduction was found to be R = Tc(1.75K)/Tco(1.98K) = 0.88 when the fraction of residual to
normal density of states, Nres/N0 = [(T1T )−1

res/(T1T )−1
n ]1/2 = 0.23. This is consistent with a predicted

value Nres/N0 = 0.36 with Tc/Tco = 0.88 in the unitarity limit for anisotropic superconductivity with
vanishing gap along a line [40, 41].

Figure 5.7: Temperature dependence of 27(1/T1) in zero field Al-NQR for UPd2Al3. The solid line shows
T 3 dependence deduced from the d-wave model by using ∆(θ) = ∆ cos θ, with 2∆/Tc=5.5. Dash-dotted
line shows the T1T=constant law which would be expected from residual density of states by impurities
[33].

The same d-wave model as the one used for CeCu2Si2 in the clean limit successfully interprets both the
T dependence of 1/T1 and Knight shift of 27Al. The solid lines in Figs.5.6 and 5.7 are calculated results
with the gap parameter 2∆0 = 5.5Tc. Here it is assumed that ∆(T ) follows the same T dependence as
that in the BCS case. Both experiments are in favor of the d-wave pairing model with a line node.

From the Knight shift result below Tc, it is shown that the large residual shift originates from the
antiferromagnetic susceptibility, while the isotropic reduction of the spin shift below Tc is due to the
formation of the singlet pairing among quasi-particles near the Fermi level. Combining results of both
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the Knight shift and 27(1/T1), which includes the impurity effect, it is concluded that UPd2Al3 is a
d-wave superconductor characterized by a vanishing energy gap along lines on the Fermi surface.

5.4.3 UPt3

superconducting phase diagram

UPt3 exhibits many indications of anisotropic superconductivity [42, 43, 44]. Figure 5.8 shows the phase
diagram in the magnetic field (B) vs temperature (T ) plane with magnetic field perpendicular (a) and
parallel (b) to the hexagonal c-axis. These phases have been mapped out by a number of different

Figure 5.8: The phase diagram of UPt3 with magnetic field B (a) perpendicular and (b) parallel to the
c-axis determined by specific heat, ultrasonic attenuation and magnetocaloric effect [42, 43, 44].

measurements. The multiplicity of superconducting phases in UPt3 is reminiscent of the complex phase
diagram of superfluid 3He. Various scenarios to interpret the complex phases of UPt3 have been proposed
with unconventional order parameters[45, 46]. All the possible order parameter representations allowed
for the hexagonal point group of UPt3 have been enumerated under the assumption of strong spin-orbit
coupling (see Table 5.2). In the presence of the inversion symmetry the parity of order parameter is a
good quantum number. A possible scenario is that the two phases at zero field belong to different order
parameter representations which are nearly degenerate accidentally. The other scenario is that the two
transitions arise from splitting of an otherwise degenerate state within a single representation. In the
latter case, a symmetry-breaking field is responsible for the splitting, in the same way as the magnetic
field lifts the two-fold degeneracy of the A-phase in superfluid 3He. A candidate for the symmetry-
breaking field in UPt3 is the proposed weak AF order below TN=5 K with moments aligned in the
basal plane. In fact, direct coupling of the weak AF to the double superconducting transitions was
found by neutron diffraction and specific heat measurements under hydrostatic pressure. As indicated
in Fig.5.9, the coalescence of two superconducting transitions correlates well with the disappearance of
elastic neutron intensity around a critical pressure of Pc=3.2 kbar [47].

It is unusual that TN itself does not show any appreciable change with pressure. Moreover the neutron
intensity, which grows linearly with temperature, behaves differently from that expected for Bragg scat-
tering. We note that no evidence for the magnetic transition has been obtained by experiments other
than neutron scattering. These include thermal and transport measurements. In particular, Pt-NMR
on a high-quality single crystal has not detected any signature of hyperfine broadening or a frequency
shift which should follow the onset of magnetic ordering [49]. On the other hand, in U(Pt0.95Pd0.05)3
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Figure 5.9: (a) Variation of integrated neutron intensity of magnetic peak (1/2, 1, 0) (closed circle) and
(1/2, 0, 1) (open circle) with hydrostatic pressure. This is a measure of square of sublattice magnetiza-
tion, M2

Q. Solid line is a fit of M2
Q ∝ (pc − p)α with α=2.6 ± 1.9 and pc = 5.4 ± 2.9. The dashed line

shows M2
Q ∝ (pc − p) which yields and 3.2 ± 0.2 kbar. (b) Pressure dependence of TN . (c) Pressure

dependence of the temperatures of double transitions [47, 48].

which undergoes the AF transition at TN=5 K with the same spin structure as UPt3 but with a larger
moment of 0.6 µB , Pt-NMR is dominated by the hyperfine field which amounts to 32 kOe [50]. Thus the
Pt-NMR results rule out the presence of a static hyperfine field of about 1 kOe, which is expected if the
ordered moment of 0.02µB is present. A possible way out is that uranium-derived moments fluctuate
with a frequency larger than the Pt-NMR frequency. It seems unlikely that such fluctuating moment
can be the symmetry-breaking field to lift the two-fold degeneracy of the order parameter. Most phe-
nomenological approaches incorporate this as the symmetry-breaking field to interpret the multiplicity
of the superconducting phase [45, 46, 51].

The parity of the order parameter in UPt3 has been determined by precise Pt Knight shift measure-
ments of a high quality single crystal. As shown in Fig.5.10 [52], the spin part of the Knight shift does
not decrease below Tc at all in a field range of 4.4 -15.6 kOe down to 25 mK. This result provides evi-
dence that odd-parity superconductivity with parallel spin pairing is realized. By contrast, the Knight
shift decreases below Tc for magnetic field parallel to the b axis with H < 5 kOe, and for magnetic field
parallel to the c axis with Hc < 2.3 kOe. Magnetic field along the a axis does not lead to a change
of Knight shift down to 1.7 kOe. This set of Pt Knight shift data seems consistent with odd-parity
superconductivity including a non-unitary pairing [52, 53].

5.4.4 UBe13

In the superconducting state of UBe13, specific heat follows approximately the T 3 law below Tc = 0.9 K
[54]. This power-law behavior is consistent with a gap vanishing at points. On the other hand, the T 3

dependence found in 1/T1 suggests a gap with line nodes [55]. Power-law behaviors are also reported
in ultrasonic attenuation [56] and the penetration depth [57]. Figure 5.11 [58] shows the upper critical
field Hc2(T ) with the following features:
(1) The slope |dHc2/dT | of the critical field is anomalously large;
(2) Hc2(T ) is almost linear in T over a large temperature range;
(3) Hc2(0) at T=0 is larger than the value calculated within the BCS theory assuming a magnetic
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Figure 5.10: T dependence of the 195Pt Knight shift for various magnetic fields: (a) Ka for Ha ∥ a, (b)
Kb for Hb ∥ b, and (c) Kc for Hc ∥ b. respectively [52]. Arrows (↓) show superconducting transition
temperatures.
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moment comparable to µB .

Figure 5.11: Upper critical magnetic field Hc2 versus temperature T for UBe13 [58].

The superconducting states of heavy electrons are very sensitive to impurities and defects. Tc can be
strongly depressed in UPt3 by grinding the sample. The substitution of a small amount of Th for U in
UBe13 leads to a rapid decrease of Tc. For Th concentrations between x=0.017 and 0.05 in U1−xThxBe13,
two phase transitions were observed in specific-heat measurements [59] with comparable discontinuities
at Tc’s. The phase diagram is shown in Fig.5.12. It has been proposed [60] that the order parameter
belongs to a one-dimensional representation Γ1 for x < xc ∼ 0.018, and a three-dimensional one Γ5 for
x > xc and T > Tc2 (see Fig.5.12). It is possible that Γ1 and Γ5 are interchanged. For T < Tc2 the
time-reversal symmetry may be broken and a mixture of the two representations may be realized.

5.4.5 Implication for the superconducting mechanism

In the three compounds above, the dynamical magnetic properties are different in each case. Nevertheless
in all three the superconducting energy gap vanishes along lines on the Fermi surface. It is almost certain
that anisotropic order parameters with spin singlet are realized in CeCu2Si2 and UPd2Al3, and that a
different anisotropic order parameter with non-unitary spin-triplet pairing is realized in UPt3, which
is the first example of this pairing symmetry in charged many body systems. These variations of the
anisotropic order parameter could be due to the different characters of the magnetic fluctuations which
lead to the Cooper pairing. We note that the integrated spectral weight of magnetic fluctuations is
smaller for Ce compounds with the 4f1 than for U compounds with 5f2−5f3. Although it is not certain
to what extent of the fluctuation frequency is relevant to the pairing, this difference in the number of
f -electrons may be a reason why the magnetism and superconductivity compete in CeCu2Si2 and can
coexist in UPd2Al3.

In the phase A of CeCu2Si2, the AF spin fluctuations which have a large spectral weight at low energy
are expelled by the onset of the superconducting transition. Application of pressure makes TK shift to
high temperature and hence transfers the spectral weight of the spin fluctuations to higher energy. As
a result Tc rapidly increases from 0.7 K at ambient pressure to around 2 K at 3 GPa. It is noteworthy
that the superconductivity is enhanced when the spectral weight is transferred to a relatively higher
energy region. This transfer is derived from the T1T=constant law, which means that the Fermi liquid
description is valid for the lowest energy excitations. An important feature is that the ground state
adjacent to the AF phase in CeCu2Si2 and CeCu2Ge2 is not the normal phase but the superconducting
one.

By contrast, UPd2Al3 is characterized by AF magnetic order with a large moment of 0.8 µB per U
atom. At the same time the Fermi liquid description is valid well below TN with a large density of states
γ=150mJ/mole K2. The record high value Tc=2 K is realized in the presence of static AF order. These
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Figure 5.12: The temperature vs Th concentration (x) phase diagram of U1−xThxBe13. Note the rapid
change in Tc(x) (solid line) as x increases up to xc ∼0.018, and the second phase transition at Tc2(x)
(dashed line) [54].

features seem to originate from the large degrees of freedom for magnetic fluctuations associated with
5f2 − 5f3-electrons.

UPt3 has remarkable features of spin fluctuations: First, although any conventional AF order is not
present, its spectral weight comes partly from a quasielastic AF contribution with the wave vector Qb

in the hexagonal plane. Secondly, there is also a sizable AF fluctuation with wave vector Qc along the
c-axis and with a rather high excitation energy of 5meV[61]. Thirdly the ferromagnetic fluctuation near
q = 0 (so-called paramagnon) is also seen in neutron scattering experiments [62]. The Fermi liquid
description applies below 1 K with the density of states γ=420 mJ/mole K2. It seems possible that
paramagnons play a role in producing the anisotropic p- or f-wave superconductivity with parallel spin
pairing in UPt3.

5.5 Toward a Microscopic Theory

The fundamental problem in the superconductivity of heavy electrons is why the strongly repulsive f
electrons form pairs. There is no definite answer to this question yet. It is instructive to compare with
triplet pairing in 3He where there is also a strongly repulsive core in the interaction [63]. At the same
time there is an attractive region in the pair potential which comes from the van der Waals force. The
triplet pairing has zero amplitude at the origin so that the repulsive core is not critical. We recall that
the van der Waals force originates from virtual polarization of valence electrons which has much higher
characteristic energy than the Fermi energy of liquid 3He. In the BCS theory, the electrons feel the
attractive force mediated by virtual lattice vibrations which have much lower energy than the Fermi
energy. In the case of 3He there is no lattice in the background, but the role of phonons is played partly
by nuclear spin fluctuations of 3He. It has been shown that ferromagnetic fluctuations favor triplet
pairing rather than singlet [63].

In heavy electrons the relative importance of phonons and spin fluctuations is still uncertain. In any
case, because of the strongly repulsive core, the s-wave pair seems to be difficult to be realized. The
anisotropic pairing force due to the electron-phonon interaction is much weaker than the isotropic one .

We discuss the pairing force qualitatively with use of the Landau quasi-particle picture. In the usual
strong coupling theory for superconductors [64], one derives the self-energy and the pairing force simul-
taneously. Then the solution of the resultant Eliashberg equation gives the transition temperature and
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the quasi-particle spectrum microscopically. This is unfortunately not possible for heavy electrons, be-
cause the renormalization leading to the Kondo state cannot be represented by any simple perturbation
processes. Thus one has to assume the spectrum of the quasi-particles, and then consider the interaction
among them. A similar situation occurs in the superfluidity of 3He [65].

We start with the linearized gap equation which is formally exact:

∆αβ(k, iϵn) = −Tc

∑
m

∑
p

∑
µν

〈αβ|Γ(k,p; iϵn, iϵm)|νµ〉Gµ(p, iϵm)Gν(−p, iϵm)∆µν(p, iϵm)

where 〈αβ|Γ(k,p; iϵn, iϵm)|νµ〉 is the irreducible vertex part for the pairing interaction. Being irreducible
in this case means that the Feynman diagram cannot be separated into two pieces by cutting the two
Green functions going parallel. We assume that Tc is much smaller than TK , which plays the role of
the Fermi energy for heavy electrons. Then we make an approximation, replacing the vertex part by
its value at the Fermi surface, and imposing the cut-off energy ωc in the summation over Matsubara
frequencies. The result is

∆αβ(k) = − ln
(

ωc

Tc

)
ρ(0)a2

f

∫
dΩp

4π
〈αβ|Γ(k,p)|νµ〉∆µν(p), (5.43)

where the integral is over the solid angle of the Fermi surface. This equation takes almost the same form
as the mean-field approximation for the pairing. What is different here is that the renormalization factor
af is present. In other words, it is in the quasi-particle picture that we make the mean-field theory in
the spirit of the Landau theory.

In order to see the effect of ferromagnetic and antiferromagnetic spin fluctuations in the simplest way,
we assume for the moment spherical symmetry and neglect the spin-orbit interaction. Then the effective
interaction is decomposed as

〈αβ|Γ(k,p)|µν〉 = U(k,p)δανδβµ + J(k,p)σαν · σβµ. (5.44)

We note that the right hand side gives U + J for the triplet pair and U − 3J for the singlet pair. Since
both k and p are at the Fermi surface, i.e. with length kF , the vertex part can be expanded in terms of
spherical harmonics as

〈αβ|Γ(k,p)|µν〉 ==
∑
lm

〈αβ|Γl|µν〉Ylm(k̂)Ylm(p̂)∗, (5.45)

where k̂ denotes the solid angle of k. This equation together with eq.(5.44) leads to the parameters Ul

and Jl which characterize the strength of potential scattering and exchange one, respectively.
The pairing amplitude is also expanded as

∆αβ(k̂) =
∑
lm

∆lm
αβYlm(k̂).

Then the gap equation given by eq.(5.43) turns into

1 = − ln(ωc/Tc)ρ(0)a2
f (Ul + Jl), (triplet, l : odd) (5.46)

1 = − ln(ωc/Tc)ρ(0)a2
f (Ul − 3Jl), (singlet, l : even). (5.47)

The actual pairing occurs for the type with the highest Tc, i.e, with a negative coupling constant with
the largest absolute magnitude.

To clarify the role of spin fluctuations we take the so-called potential scattering model [65] where U and
J depend only on the momentum transfer k − p. This model enables us to make a connection between
Γ(k,p) and the Landau parameters. The spin-independent scattering U(k−p) should be dominated by
the strong on-site repulsion. Then its angle dependence should be weaker and Ul is dominated by the
component l = 0. Because of the large positive value of U0, s-wave pairing is strongly suppressed. On
the other hand, the spin-dependent part J(k−p) is related to the magnetic susceptibility χ(q, ω). If we
assume a constant λ for the spin-fermion coupling constant, the relation reads

J(k − p) = λ2χ(k − p, 0)/4.
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J ( q ) ( a )

( b )

0

0

π/ aq

Figure 5.13: Momentum dependence of the exchange interaction shown schematically: (a) antiferromag-
netic case, (b) ferromagnetic case.

If the spin fluctuation is dominantly ferromagnetic, J(q) becomes negative near the center of the
Brillouin zone as shown schematically in Fig.5.13(b). The angular momentum component is given by
the transformation which is the inverse of eq.(5.45):

Jl = (l +
1
2
)
∫ 1

−1

dxPl(x)J(q),

where x = 1 − q2/(2k2
F ). In this case J1 tends to be negative because P1(x)J(q) is negative over most

of the integration range. Thus triplet pairing is favorable with the ferromagnetic spin fluctuation. On
the other hand, if the spin fluctuation is dominantly antiferromagnetic, J(q) becomes negative near the
boundary of the Brillouin zone. This is illustrated in Fig.5.13(a). In this case J1 tends to be positive
and triplet pairing does not occur. With antiferromagnetic fluctuation, J2 becomes positive because of
dominant contribution from q ∼ 2kF . Thus d-wave singlet pairing is favored [66].

The connection to the Landau parameters is given via consideration of the general form of the t-matrix
for the quasi-particles. For incoming particles of momenta p1 and p2, and outgoing particles with p3 and
p4, the t-matrix T depends on two parameters x3 = p̂1 · p̂3 and x4 = p̂1 · p̂4. Then the spin dependence
can be parametrized as

〈αβ|T (x3, x4)|µν〉 = T d(x3, x4)δανδβµ + T x(x3, x4)σαν · σβµ. (5.48)

The t-matrix is in general different from the vertex part in eq.(5.43) since the latter should exclude the
pair propagator in the intermediate state. In the potential scattering model this intermediate state is
not included even in the t-matrix and we obtain the relation

T d(x3, x4) = U(x3) − U(x4), T x(x3, x4) = J(x3) − J(x4),

where the second terms with minus signs take account of exchange of the outgoing momenta.
The forward scattering amplitudes Al and Bl in the Landau theory (see 1.3.4) are obtained by setting

x3 = 1 and expanding in terms of Legendre polynomials. As a result we obtain

Al = U(1)δl,0 − Ul, Bl = J(1)δl,0 − Jl.

This model automatically satisfies the forward scattering sum rule

〈αα|T (x3, x4)|αα〉 =
∑

l

(Al + Bl) = 0.

Thus if some Landau parameters are known from properties of the normal state, the parameters in the
potential scattering model are constrained.
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We remark again that the analysis above assumes spherical symmetry and neglects the spin-orbit
interaction. In actual heavy-electron systems, the quantitative analysis should respect the point group
symmetry. One can deal with the symmetry in terms of appropriate basis functions instead of the
spherical harmonics used above. Much less is known about the effect of strong anisotropy in the g-
factor.
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Chapter 6

Comparison with High-Temperature
Superconductors

6.1 Characteristics of Copper Oxides

The discovery by Bednorz and Müller(1986) of superconductivity at 30 K in the ceramic copper oxides
[1] La2−xBaxCuO4(abbreviated as 2-1-4) has had great impact on solid-state physics. This breakthrough
was followed soon by the discovery of the 90 K-class superconductor YBa2Cu3O7−y(1-2-3) and recently
by that of 130 K-class HgBa2Ca2Cu3O8+y (Hg1223). These cuprates have the following characteristic
properties [2]:

1. The CuO2 planes are commonly present, and are separated by bridging blocks which act as charge
reservoirs for the planes. Fig.6.1 illustrates the structure of the (2-1-4) system.

Figure 6.1: Crystal structure of La2CuO4.

2. The undoped compounds, La2CuO4 and YBa2Cu3O6 are antiferromagnetic (AF) insulators (Mott
insulators) in which strong Coulomb correlations act to localize the Cu2+ electrons with spin-1/2 so
that the system behaves like a two dimensional (2D) Heisenberg antiferromagnet. The long-range
order is caused by weak interlayer magnetic coupling between the CuO2 planes. As holes are added
into the plane through the substitution of Sr into La sites for the 2-1-4, or through oxygen doping
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into the CuO chain sites in the 1-2-3, the Néel temperature is reduced. The Cu2+ spins no longer
exhibit long range AF order beyond a critical hole content which corresponds to La1.95Sr0.05CuO4

and YBa2Cu3O6.4. At higher doping level, the system enters an anomalous metallic phase which
exhibits the superconducting transition with high-Tc value. Fig.6.2 shows the phase diagram for
the 2-1-4 including magnetic and structural phase transitions as a function of the doping level [3].

Figure 6.2: Antiferromagnetic, superconducting and structural phase diagram of La2−xSrxCuO4 [3].

3. Properties in the normal state deviate from those of the Fermi liquid in contrast to conventional
and heavy electron superconductors. For example, the resistivity shows a T -linear behavior over
a wide temperature range for most cases. With increasing carrier content, however, it changes
from T -linear to T 2 behavior characteristic of the Fermi liquid. Eventually the superconductivity
disappears. Figure 6.3 shows the T -dependence of the resistivity for Tl2Ba2CuO6+y (Tl2201)
compounds with different Tc [4].

Figure 6.3: Temperature dependence of resistivity in Tl2Ba2CuO6+δ with various Tc. All measurements
were made using the same sample whose Tc was controlled [4].
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4. None of the superconducting properties resemble those of the singlet s-wave in which the energy
gap is finite and isotropic. A growing list of experimental results are consistent with the dx2−y2

pairing state where the energy gap vanishes along lines. The NMR experiments such as nuclear
relaxation[5, 6], Knight shift and impurity effect [7, 8, 9, 10] have provided important clues to
identifying the pairing symmetry of the high-Tc superconductivity as the d-wave. The NMR study
was the first to find the unconventional impurity effect: Tc is insensitive to the presence of impurities
and other imperfections, whereas the low T properties in the superconducting state are extremely
sensitive to the presence of a minute concentration of impurities and imperfections. In contrast
to the novel properties in the normal state, the superconducting properties share the anisotropic
character with that in heavy-electron superconductors. This commonality seems to originate from
the strong repulsive interaction in both systems; the node is favorable to reducing the energy cost
of forming the pair.

There is no consensus on theoretical models to explain the anomalous normal and superconducting
properties over the entire doping level in a unified way. However, a modified form of the BCS theory,
which incorporates an unconventional pairing state mediated by magnetic fluctuations, seems a valid
phenomenology in describing the anisotropic superconducting state with the d-wave pairing symmetry.

6.2 Spin Dynamics Probed by NMR

6.2.1 Static spin susceptibility

Following Mila and Rice [11], we take the Hamiltonian for the 63Cu nuclear spin as given in terms of the
on-site hyperfine coupling Aα (α =⊥, ∥) with d-electrons, and the supertransferred hyperfine coupling B
with four nearest-neighbor Cu sites. The latter coupling is through the Cu (3d)-O(2pσ)-Cu(4s) covalent
bond. The Hamiltonian at site i is expressed as

63Hi = A∥Iiz · Siz + A⊥(Iix · Six + Iiy · Siy) + B
∑

j

Ii · Sj , (6.1)

where summation is over the four Cu nearest neighbors. On the other hand, the Hamiltonian with the
17O nuclear spin at site k is given in terms of the transferred hyperfine coupling constant C between the
oxygen nuclei and the Cu spins as follows:

17Hk = C
∑

l

Ik · Sl (6.2)

where summation is over the two Cu nearest neighbors. The spin part 63Ks of the Knight shift is
expressed as

63Ks(T ) = (Aα + 4B)χs(T ) (α =∥,⊥). (6.3)

From the relation
χs(T ) = (K⊥obs(T ) − Korb)NµB/(A⊥ + 4B), (6.4)

the T dependence of the spin susceptibility χs(T ) is deduced as indicated in Fig.6.4[12]. Here we use the
results for the T independent orbital shift of Korb = 0.24% and the on-site anisotropic and the isotropic
hyperfine field, A⊥ and B with 35 and 40 kOe/µB , respectively. Experimentally the value of Korb is
found to be independent of the hole content over a wide doping level, while the value of B increases with
increasing hole content beyond the optimum value.

In underdoped high-Tc cuprates where the hole content is smaller than the optimum value, the spin
susceptibility χs(T ) increases monotonically with increasing T , whereas in overdoped cases, χs(T ) stays
constant.

6.2.2 Spin dynamics

The nuclear-spin-lattice relaxation rate, 1/T1 of 63Cu is dominated by the AF spin fluctuations around
the zone boundary Q = (π/a, π/a) for the square lattice, whereas 1/T1 of 17O is not affected by the AF



164 CHAPTER 6. COMPARISON WITH HIGH-TEMPERATURE SUPERCONDUCTORS

Figure 6.4: Temperature dependence of spin susceptibility deduced from 63Cu Knight shift for various
high-Tc compounds [12].

spin fluctuations since they are filtered away by the form factor. The form factors F⊥(q) and F∥(q) for
respective direction of the magnetic field are written in terms of the hyperfine couplings as

F⊥(q) = A⊥ + 2B[cos (qxa) + cos (qya)] (6.5)
F∥(q) = A∥ + 2B[cos (qxa) + cos (qya)]

G(q) = 2C cos(
1
2
qxa) (6.6)

where a is the distance between Cu sites. Then with the use of the dynamical susceptibility, χ(q, ω),
63(1/T1) and 17(1/T1) are given by

63

(
1
T1

)
∥

=
3kBT

2
1

µ2
Bh̄2

∑
q

F⊥(q)2
Imχ(q, ωn)

ωn
(6.7)

63

(
1
T1

)
⊥

=
3kBT

4
1

µ2
Bh̄2

∑
q

(F⊥(q)2 + F∥(q)2)
Imχ(q, ωn)

ωn
(6.8)

17

(
1
T1

)
=

3kBT

4
1

µ2
Bh̄2

∑
q

G(q)2
Imχ(q, ωn)

ωn
(6.9)

where ωn is the NMR frequency.
In the case of AF spin fluctuations, the q-sums in eqs.(6.7) and (6.8) are dominated by contributions

around q = Q = (π/a, π/a). However, the sum around q = 0 is dominant in eq.(6.9) because of the
property G(Q) = 0 at Q = (π/a, π/a). Then we have

63

(
1

T1T

)
=63 ∆(A − 4B)2

Imχ(Q, ωn)
ωn

(6.10)

,
17

(
1

T1T

)
=17 ∆C2 Imχ(0, ωn)

ωn
(6.11)

, with 63∆ and 17∆ describing the respective width in the q-space.
Figures.6.5(a) and (b) indicate the contrasting T dependence of 1/T1T in 63Cu and 17O in the CuO2

plane for both YBa2Cu3O7 (YBCO7) with Tc=90 K and YBCO6.65 with Tc= 60 K. Namely 17(1/T1T ) is
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found to be proportional to the static spin susceptibility χs(T ), as indicated by solid lines in Fig.6.5(a).
Comparison with Fig.6.5 (b) shows that the dynamical susceptibility is significantly peaked around
Q = (π/a, π/a) [13].

Figure 6.5: Temperature dependence of (a) 17(T1T )−1 and (b) 63(T1T )−1 in YBa2Cu3O7 with Tc=92K
and YBa2Cu3O6.65 with Tc=60 K [13].

If we assume that Imχ(Q + q, ω) obeys the double Lorentzian form in momentum (q) and energy (ω)
distributions, Eqs.(1.84) − (1.89) lead to 63(1/T1T ) in the form

63

(
1

T1T

)
∝ (A − 4B)2

χQ(T )

Γ0
. (6.12)

Figures 6.6 (a) and (b) show the T dependences of 63(1/T1T ) and 63(T1T ) in La2−xSrxCuO4 with various
Sr content, x [14, 15]. This demonstrates that χQ(T ) follows the Curie-Weiss law due to the substantial
spin fluctuations around Q. We remark that in the uniform susceptibility the Curie-Weiss law is not
seen in contrast to heavy-electron systems.

Since we have ΓQ(T )χQ(T ) =constant according to eq.(1.87), the ensuing relation

63(T1T ) = αΓQ(T ) (6.13)

provides a direct measurement of the damping rate ΓQ of AF spin fluctuations around Q. Since T1T in
La2−xSrxCuO4 varies linearly with temperature as displayed in Fig.6.6 (b), we obtain

ΓQ(T ) = β[T + T ∗(x)]. (6.14)

From an experimental relation: T ∗(x) ∝ (x − 0.05), ΓQ(T ) for x=0.05 approaches zero towards T=0.
This is consistent with the fact that x=0.05 is just the phase boundary between the superconducting
and the magnetic phases.

On the other hand, the nuclear spin-spin Gaussian decay rate, 1/T2G provides a measure of the
magnetic correlation length ξ(T ) [16, 17, 18]. In two-dimensional system, the integration in eq.(1.146)
leads to the relation 1/T2G ∝ ξ(T ). In underdoped high-Tc compounds such as YBCO6.65[17] and
YBa2Cu4O8[19], the temperature dependence of T2G follows a Curie-Weiss law. Hence we have the
relation 1/ξ(T ) = a + bT . From the experimental relation of (T1T )/T2G=constant, as shown in Fig.6.7,
a remarkable relation

ΓQ(T ) =
c

ξ(T )
(6.15)

follows for spin fluctuations in underdoped high-Tc cuprates. A scaling argument for quantum critical
fluctuations has been put forth [20, 21] in describing the above relation between ΓQ(T ) and ξ(T ) in the
normal state for underdoped high-Tc cuprates.



166 CHAPTER 6. COMPARISON WITH HIGH-TEMPERATURE SUPERCONDUCTORS

Figure 6.6: Temperature dependence of 63(T1T )−1 (a) and 63(T1T ) (b) in La2−xSrxCuO4 with various
x. [14, 15].

In the underdoped region the high-Tc cuprates deviate most strongly from conventional materials. As
seen in Fig.6.5(b), 63(1/T1T ) for the underdoped YBCO6.65 has a shallow peak around 150 K followed
by the significant decrease down to Tc=60 K[22, 13]. This behavior suggests the presence of a pseudo
spin gap in spin excitations, and has been confirmed by subsequent neutron experiments as well [23]. In
addition to these anomalies in magnetic excitations, the pseudo gap of the same size and q dependence as
the d-wave superconducting gap has been revealed by the photoemission experiments[24]. The persistence
of the gap above Tc leads to an argument that phase fluctuation may be the determining factor of Tc. At
present, it is controversial whether the pseudo gap is interpreted as some superconducting fluctuations
[25] or the spin excitation gap from some resonating-valence-bond (RVB)-type singlet state[26, 27].

Figure 6.7: T dependence of the (T1T )/T2G for the underdoped YBa2Cu4O8[19]

By contrast, in optimum and overdoped high-Tc compounds such as YBCO7[28], Hg(1223) [29] and
TlSr2CaCu2O8+δ (Tl1212) [30], the experimental relation (T1T )/(T2G)2= constant holds as shown in
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Figure 6.8: Temperature dependence of (T1T∥)/(T2G)2 for the optimum and overdoped high-Tc cuprates
[29, 30]. Differences in the hyperfine coupling constant have been corrected.

Fig.6.8. This leads to the relation

ΓQ(T ) =
c′

ξ2(T )
, (6.16)

which is consistent with phenomenological RPA-type approaches [31, 32].
By combining both NMR and neutron experimental results, it is suggested that the quantum critical

aspect of spin correlations in underdoped systems is relevant to the onset of the high-Tc superconductivity.
Increasing the number of holes causes spin correlations to be overdamped and leads to enhancement of
Tc. With further increase of the hole content, a dramatic change in the spin dynamics occurs as shown

Figure 6.9: Change of the quantity 63(T1T )−1
c /(Aab − 4B)2 = (αΓQ)−1 with increasing hole content

[29, 30].

in Fig.6.9 [33]. Namely Imχ(Q, ω) is suppressed in the low temperature region, suggesting that ΓQ
increases. As a result (1/T1T ) stays constant in a wide range of T . Doping of holes above an optimum
value makes the AF correlation length shorter and decreases the Tc. This change was extracted from
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the anisotropy of R = (T1T )⊥/(T1T )∥. For the case where χ(q) is strongly peaked at q = Q, we obtain

63RAF =
(A⊥ − 4B)2 + (A∥ − 4B)2

2(A⊥ − 4B)2
, (6.17)

whereas if χ(q) is q-independent,

63Rr =
(A2

⊥ + 4B2) + (A2
∥ + 4B2)

2(A2
⊥ + 4B2)

, (6.18)

follows. 63R’s in various high-Tc cuprates are collected in Fig.6.10. 63R decreases progressively from
63RAF to 63Rr with increasing B or holes. The AF spin correlation in Tl1212 with Tc=10 K are
considerably weaker, and that in Tl2201 with Tc=0 is almost absent. Both cases are close to the limit
63Rr. This shows that the presence of the AF spin fluctuation is correlated with the occurrence of
superconductivity.

Figure 6.10: The anisotropy ratio 63Rex =63 (1/T1T )ab/
63(1/T1T )c in high-Tc cuprates with various

Tc’s and hole contents. Lines indicated by 63RAF and 63Rr describe the limiting cases for strongly
q-dependent AF spin correlations and q-independent ones, respectively [30].

We note that the spin fluctuation spectrum becomes broader in the q-space as the characteristic energy
ΓQ increases with increasing hole content. This variation of q dependence of spin dynamics suggests
that Tc has a maximum at an optimum characteristic energy ΓQ in the range of 20-40 meV. The q

dependence of spin fluctuations is a necessary condition for the occurrence of superconductivity [30, 34].
These properties are consistent with some phenomenological models [32, 35, 36] for spin-fluctuation-
induced superconductivity. They also provide explanation for the d-wave superconductivity established
experimentally. However, any microscopic theory is not yet presented.

It is noteworthy that the nature of low energy spin fluctuations in high-Tc cuprates is non-local,
dominated by the superexchange interaction Jex ∼ 1500K which is clearly present in the parent AF
insulator. On the other hand the spin fluctuation in heavy-electron systems is nearly local due to the
weak hybridization between f - and conduction electrons. In the latter systems, the q dependent magnetic
response emerges only well below the effective Fermi temperature in a range of 10-100 K.

6.3 The p-d Hybridization Model

As the simplest model to investigate the quasi two-dimensional cuprates, we consider a square lattice
where each copper site at a lattice point Rj = (n,m) has the 3dx2−y2 orbital. The model is shown
schematically in Fig.6.11. The annihilation operator of the corresponding hole is represented by djσ
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Figure 6.11: The geometry of the p-d hybridization model. Each Cu site with the 3dx2−y2 orbital is
surrounded by four O sites with anti-bonding 2px or 2py orbitals.

with spin σ. The d-hole has Coulomb repulsion Ud. For each oxygen at ri = (n + 1/2,m), we take the
2px anti-bonding orbital which interacts most strongly with the 3d hole. The annihilation operator of
the hole is written as ciσ. Similarly for each oxygen site at rl = (n, m + 1/2), we take the 2py orbital
with the annihilation operator written as clσ. The Hamiltonian is given by

H = H1 + H2, (6.19)

H1 =
∑
ij

∑
σ

tijc
†
iσcjσ +

∑
i

∑
σ

ϵdd
†
iσdiσ + V

∑
<ij>

∑
σ

(c†iσdjσ + d†
jσciσ), (6.20)

H2 = Ud

∑
j

nd↑nd↓, (6.21)

where tii = ϵp is the level of a 2p hole and the nearest neighbor 2p-2p transfer is given by tij = −tp. The
strong covalency between 2p and 3d holes is taken into account by V . The sum is over nearest neighbors
of Cu and O sites.

In order to simplify the notation we have chosen the phase of the operator djσ at Rj = (n,m) so that
the odd parity of the p state is compensated. Namely, if n + m is odd the phase is chosen opposite to
that at a site with n + m even. Then V is taken to be a constant. The change of phase corresponds to
the shift (π/a, π/a) of the Brillouin zone. This p-d hybridization model has an obvious similarity to the
Anderson lattice. However, relative magnitudes of parameters are much different from those for heavy
electrons. The typical values are:

Ud = 10.5, t = 1.3, ϵp − ϵd ≡ ∆ = 3.6,

in units of eV [37].
Since Ud is much larger than any other parameters in the model, it is reasonable to work with another

effective Hamiltonian which eliminates the double occupation of a 3d orbital which corresponds to a 3d8

configuration. One can also assume that ϵd is deep enough below the Fermi level and can neglect the
3d10 configuration. Then the spin operator Sj is sufficient to describe the dynamics of the 3d hole. For
2p holes we introduce the notation:

xiσ =
1√
2
(ci−x̂/2,σ + ci+x̂/2,σ), (6.22)

yiσ =
1√
2
(ci−ŷ/2,σ + ci+ŷ/2,σ), (6.23)

aiσ =
1√
2
(xiσ + yiσ), (6.24)

where x̂ and ŷ denote unit vectors along each axis. Note that these operators use a non-orthogonal basis
so that the fermion anti-commutator {xiσ, y†

jσ} does not vanish if xiσ and y†
jσ have a common oxygen
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orbital. The effective Hamiltonian is given by

Heff =
∑

i

Hi + J
∑
<ij>

Si · Sj − 4NV 2

∆
, (6.25)

Hi = −2tp
∑

σ

(x†
iσyiσ + y†

iσxiσ) + 2ts
∑

σ

a†
iσaiσ + 4Js

∑
αβ

Si · a†
iασαβaiβ , (6.26)

where the origin of energy is taken to be the 2p hole level ϵp. Here the new parameters J , Js and ts are
given by

J =
4V 4

∆2

(
1
Ud

+
1
∆

)
, Js = V 2

(
1
∆

+
1

Ud − ∆

)
, ts = V 2

(
1
∆

− 1
Ud − ∆

)
. (6.27)

The parameter ts describes the effective transfer between 2p orbitals induced by p-d hybridization. The
transfer occurs not only between 2px and 2py, but also between 2px and 2px sandwiching the copper
site. The spectra of the 2p bands without account of Js is given by

E(k) = ts(cos kx + cos ky) ±
√

ts(cos kx − cos ky)2 + 16(tp − ts)2 cos2
1
2
kx cos2

1
2
ky. (6.28)

It is instructive to compare eq.(6.25) to the Kondo lattice model discussed in Chapter 3. The two
models are essentially the same except for the difference in relative magnitudes of parameters, and the
filling of the conduction band. The large Js is favorable to formation of a singlet which is composed of
3d and 2p holes sitting at nearest neighbors. This state is often called the Zhang-Rice singlet [38]. The
Zhang-Rice singlet in the p-d hybridization model evolves continuously into the Kondo singlet as the
ratio Js/ts becomes smaller, as long as there are enough 2p holes to screen the 3d spin. Accordingly
the extension of the singlet wave function grows as the singlet energy scale decreases. Let us consider
the case where there is precisely one 2p hole per unit cell of the lattice. In the limit of large Js, all 2p
holes form the Zhang-Rice singlet, and there are no mobile carriers. Then the system should become an
insulator. This state corresponds to the Kondo insulator in the opposite limit of small Js. The important
feature common to both insulating states is that the ground state connects continuously to the band
insulator. We recall that for description of the hydrogen molecule, both the Heitler-London picture and
the molecular orbital picture are useful. The Zhang-Rice singlet is close to the Heitler-London picture.

In contrast to heavy electron metals, however, the 2p holes are absent unless the material is doped.
Without 2p holes the effect of Js does not appear explicitly in physical properties, and the effective model
to describe the dynamics of the 3d holes reduces to the Heisenberg model. Actually from numerical work
[39], the presence of some important corrections to the Heisenberg model are suggested. Namely taking
a small cluster Cu4O8 with a free boundary condition, one computes low-lying levels by exact numerical
diagonalization of the Hamiltonian given by eq.(6.25). Then fitting of these levels by an effective model
requires not only the Cu-Cu nearest-neighbor exchange but a large 4-spin interaction. However it is not
clear whether this result remains the same as the system size increases.

Let us consider a situation where a single 2p hole is doped in the insulating state. Because of the
large coupling Js, the 2p hole forms a singlet with any of 3d hole, and the entity can move due to the
non-orthogonality of 2p orbitals. The resultant moving unit can alternatively be viewed as a defect in
3d spins. The mathematical expression of the latter view is called the t-J model as discussed in the next
section.

6.4 Separation of Spin and Charge in Dynamics

The characteristic energy of spin fluctuations in heavy electron systems is much smaller than of the
f -charge excitation which is |ϵf | or U . This is seen in the dynamical susceptibilities of spin and charge
as discussed in Chapter 3. In this sense the spin and charge have different dynamical scales. The
velocity of the excitations, however, is the same in the low-energy limit. This is because the Fermi liquid
ground state has the single Fermi velocity which sets the energy of quasi-particles in the metallic state.
Having the same velocity does not depend on strength of the correlation. A similar situation holds in the
insulating case called the Kondo insulator (except in one-dimension to be discussed below). Namely, the
energy gap is common for both spin and charge excitations, as in usual semiconductors. The appearance
of strong correlation is in the spectral intensity which is much smaller for the charge excitation near the
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threshold. If a bound state is present such as excitons, the spin excitation has a lower threshold than
the charge excitation because of the exchange interaction between the excited pair. This difference of
the threshold, however, is also seen in semiconductors.

In one dimension, on the other hand, the spin and charge excitations can really have different velocities.
This is in strong contrast with the Fermi liquid state, and is called spin-charge separation. We take the
t-J model as the simplest model to display the characteristics in one dimension. The model under finite
magnetic field h is given by

H = P
∑
i̸=j

[−tij
∑

σ

c†iσcjσ +
1
2
Jij(Si · Sj − 1

4
ninj)]P − 2h

∑
i

Siz, (6.29)

where P is the projection operator to exclude double occupation of each site. The t-J model can be
derived from the Hubbard model as an effective model in the limit of large U . It can also be obtained
from the p-d hybridization model in the limit of large binding energy of the Zhang-Rice singlet. Here
we regard instead the transfer −tij and the exchange Jij between the sites i, j as free parameters in the
model. In some special cases the model can be solved exactly. The first case is that the parameters
satisfy tij = Jij/2 = J/2 for nearest neighbors and zero otherwise. In this case the model can be solved
analytically by use of the Bethe ansatz [40, 41]. Another solvable case is when the parameters take a
long-range form

Jij = 2tij = JD(xi − xj)−2, D(xi − xj) = (N/π) sin[π(xi − xj)/N ]. (6.30)

The quantity D(xi − xj) corresponds to the chord distance between the two sites in the ring-shaped
system. In the second case it has been shown [42] that the ground state can be obtained explicitly. Let
us take the completely up-polarized state as the reference state, and xα denotes the site occupied by a
down spin, and yℓ does a vacant (hole) site. Then the eigenfunction of the ground state at h = 0 takes
the following form:

ΨG({x}, {y}) = exp[−iπ(
M∑

α=1

xα +
Q∑

ℓ=1

yℓ)]
∏
α>β

D(xα − xβ)2
∏
ℓ>m

D(yℓ − ym)
∏
α,ℓ

D(xα − yℓ). (6.31)

This wave function has the same form as the Gutzwiller wave function if the reference state is taken to
be the vacant state instead of the fully polarized one.

One can also derive low-lying excited states starting from this wave function. The procedure of
derivation is rather involved, and we give here only the results [43]. The spin susceptibility χs at zero
temperature is given by

χs =
∂(n↑ − n↓)

∂h
=

4
π2J(1 − |m|) ≡ 2

πvs
, (6.32)

which depends only on magnetization m = 〈ni↑ − ni↓〉 per site and is independent of the filling n =
〈ni↑ + ni↓〉. This is a manifestation of the spin-charge separation. The spin velocity vs is defined by
analogy with the Fermi velocity which would have entered in the absence of interaction. Similarly we
introduce the charge velocity vc by the charge susceptibility χc at T = 0 which is given by

χc =
∂(n↑ + n↓)

∂µ
=

4
π2J(1 − n)

≡ 2
πvc

. (6.33)

This is now independent of the magnetization m. It is remarkable that spin and charge susceptibilities
have exactly the same form as functions of m and n, respectively.

The specific heat is linear in temperature as in the case of the Fermi liquid. The coefficient γ is given
by

γ = χs + χc, (6.34)

which shows that both spin and charge excitations contribute to the linear specific heat. It is clear
that the charge velocity vanishes in the high-density limit. As a result the specific heat diverges due to
the soft charge excitation. On the other hand, the spin velocity remains finite for all densities without
magnetization, but diverges in the limit m → 1. Figure 6.12 shows χs at finite temperatures and with
m = 0 [44]. It is seen that χs increases linearly from zero temperature, which is to be contrasted
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Figure 6.12: The spin susceptibility of the supersymmetric t-J model with the long-range interaction.

with the T 2 dependence in the Fermi liquid. The slope is independent of the filling and is given by
∂χs/∂T = 16/(πJ)2. However, in the presence of magnetization χs has the T 2 dependence as given by

χs =
4

π2(1 − m)J

[
1 +

8T 2

3π2(1 − m)4J2

]
+ O(T 3). (6.35)

Remarkably, the charge susceptibility has again the same form as given by eq.(6.35) with m replaced
by n. This nice symmetry is specific to the present supersymmetric model. In other one-dimensional
fermion systems, the spin-charge separation appears as the different spin and charge velocities only. The
spin susceptibility of the Heisenberg chain is given by the same formula as eq.(6.32) with m = 0 at
T = 0, but the temperature dependence involves lnT [45]. This complication can be understood by
perturbation theory from the high-density (spin-chain) limit of the present t-J model which is called the
Haldane-Shastry model [46, 47].

Numerical studies in one dimension have also been made for the Anderson lattice model or the Kondo
lattice model. This includes the Monte Carlo calculation and the numerical diagonalization of the
Hamiltonian. At present it is still not possible for these numerical studies to deal with the Kondo energy
TK if it is much smaller than the bare parameters in the model. Only the numerical renormalization
group for the single impurity has achieved the treatment of the minute scale. Recently, a new numerical
method called the density matrix renormalization group has been introduced [48] and is becoming an
area of very active investigation.

6.5 Epilogue — to Be or Not to Be a Fermi Liquid

The strong correlation among electrons appears in two qualitatively different ways: perturbative and
non-perturbative. This distinction persists even though we restrict the discussion to the paramagnetic
state. In the case of the Fermi liquid, the ground and low-lying excited states are adiabatically connected
to corresponding states in the noninteracting Fermi gas. On the other hand, the electronic states in one
dimension are not accessible by perturbation theory with respect to the interaction among electrons. In
this sense the distinction between the Fermi liquid and the non-Fermi liquid is clear at zero temperature.
However at finite temperature the distinction is not always possible; even in the Fermi liquid the sharp
discontinuity of the momentum distribution at the Fermi surface is absent. This ambiguity causes a lot
of dispute about the nature of electronic states in high temperature superconductors in the normal state.

The terminology of “spin-charge separation” is popular in the area of high-Tc superconductivity. As we
have discussed, the phenomenon is well established in one-dimensional electron systems. Since there are
no ideal one-dimensional system in the real world, the problem is how important is the three-dimensional
perturbation. In two dimensions, on the other hand, there is still no established answer about the
relevance of the non-Fermi liquid state. The importance of forward scattering is emphasized which
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might break the Fermi liquid nature of excitations [49]. If one uses the renormalization group to decide
the relevance or irrelevance of the Coulomb interaction, the critical dimension turns out to be one [50].
Hence the two-dimensional system belongs to the universality class of higher dimensions. However, if the
fixed-point behavior is limited only to very narrow region, this behavior is less relevant experimentally.
Instead, some different behavior in the crossover region may dominate the most interesting parameter
regions. For example, in the quasi-one-dimensional system where the interchain coupling is very weak, the
one-dimensional behavior will dominate although the system is driven eventually to the three-dimensional
fixed point.

As explained in the present chapter, superconducting oxides probed by the NMR [13, 22] and neutron-
scattering [23] show an apparent gap for spin excitations. The charge excitation as observed by optical
absorption is gapless. In connection with the problem of Fermi liquid or not, it is very important whether
the spin and charge excitations have really different thresholds of excitations, or they have simply different
scales for dynamics. In a spectroscopic experiment it is obviously impossible to distinguish between
zero spectral intensity and small but finite one. In fact, even in three-dimensional systems the optical
experiment sometimes claims an energy gap apparently larger than the one measured by a magnetic
probe such as neutron scattering and NMR. We have seen in many places in this book that the strong
correlation brings about very different spectral weights between the spin and charge excitations even in
the Fermi liquid state. Thus in order to decide Fermi liquid or not, one must examine more detailed
dependence of the spectrum upon temperature and frequency. It seems that the experimental results so
far are not sufficient by themselves to resolve the issue.

In heavy electron systems, the non-Fermi liquid ground state has other occasions to appear without the
spin-charge separation. The first case is realized near the critical boundary between the paramagnetic
ground state and a magnetic one. An example is an alloy system CeCu6−xAux [51]. With increasing
x, there appears a region where the magnetic susceptibility and the specific heat shows logarithmic
dependence on temperature. In this case the characteristic energies on both sides of the phase boundary
are reduced near the critical region. As a result even a ”low temperature” in the usual experimental
sense can already be above the characteristic energy.

The second instance for the non-Fermi liquid is closely related to the electronic structure of U ions.
For example the quadrupolar Kondo effect discussed in Chapter 2 is a candidate to realize the non-Fermi
liquid in impurity systems. In the dilute alloy U1−xThxRu2Si2 the non-Fermi liquid seems to be realized
as a consequence of an isolated U impurity [52]. Another example where the interplay between the strong
correlation and the disorder effect is also important is U1−xYxPd3 [53, 54]. In the latter case the local
Fermi liquid is resumed in the dilute limit of U ions [55]. Deviation from the Fermi-liquid behavior is also
seen near the quantum critical point where the ground state of the system changes from paramagnetic
to antiferromagnetic or to spin-glass [56]. Distinction between these cases should be made possible by
varying external parameters and seeing the dependence of physical quantities on these parameters.

Although the present book focused mostly on heavy electrons in rare-earth and actinide compounds,
comparative study together with 3d electron systems should be rewarding [57]. The recent interest
common in f- and d-electron systems is the coupling between spin and orbital degrees of freedom. This
appears in f-electron systems as the quadrupole ordering in CeB6 as discussed in Chapter 4 and TmTe
[58]. Essentially the same ordering is called orbital order in 3d electron systems such as La1−xSrxMnO3.
In the latter system, a hole is doped by addition of Sr [59] and the magnetic anisotropy changes drastically
[60].

Another interesting phenomenon to be clarified in the near future is the occurrence of heavy electrons
in systems with very small number of carriers. Typical examples such as CeP and Yb4As3 are discussed
in Chapter 4. The antiferromagnetic correlation between localized pair of electrons tend to form a
singlet. If there are many fluctuating singlets around each spin, the correlation looks similar to the
Kondo screening. Namely instead of mobile conduction electrons, surrounding spins may also provide
singlet cloud by slow fluctuation of spins. If the spin fluctuations are gapless, they lead to large T -linear
specific heat. In the Fermi liquid, the slow spin fluctuation appears as an enhanced effective mass. Even
though the number of carriers is small the slow spin fluctuation can appear as a large specific heat.
Because of these new developments, the field of strongly correlated electrons including heavy electrons
will still remain one of the most challenging fields in condensed-matter physics for both theory and
experiment.
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Appendix A

Linear Response Theory

The linear response theory is based upon two basic assumptions [1]:
(a) the system is in thermal equilibrium before the external perturbation Hex(t) such as magnetic field
is switched on;
(b) the system develops adiabatically in the course of infinitesimally slow increase of Hex(t);
On these assumptions let us first consider the expectation value of an operator A for the ground state
|Ψg〉. In the Schrödinger picture the time dependence of the expectation value comes from that of the
state vector |Ψg(t)〉. The latter is given by

i
∂

∂t
|Ψg(t)〉 = [H + Hex(t)]|Ψg(t)〉. (A.1)

In order to deal with the external field perturbationally we introduce a unitary operator U(t) such that

|Ψg(t)〉 = exp(−iHt)U(t)|Ψg(−∞)〉, (A.2)

where |Ψg(−∞)〉 is the ground state without Hex. Substituting this into the Schrödinger equation we
obtain

i
∂

∂t
U(t) = exp(iHt)Hex(t) exp(−iHt)U(t) ≡ HH

ex(t)U(t), (A.3)

where the Heisenberg representation HH
ex(t) has been introduced. In solving eq.(A.3) we use the assump-

tion (a) as the boundary condition U(−∞) = 1. Iterative solution starts with replacing U(t) on the
right hand side by 1 and integrating with respect to t, giving

U(t) = 1 − i

∫ t

−∞
dt′HH

ex(t′) + O(H2
ex). (A.4)

Then we get

〈Ψg(t)|A|Ψg(t)〉 = 〈Ψg(−∞)|U(t)†AH(t)U(t)|Ψg(−∞)〉 (A.5)

= 〈Ψg(−∞)|AH(t)|Ψg(−∞)〉 − i

∫ t

−∞
dt′〈Ψg(−∞)|[AH(t),HH

ex(t′)]|Ψg(−∞)〉 + O(H2
ex). (A.6)

At finite temperature T = β−1 the system is in the thermal equilibrium at t = −∞ characterized by
the density operator exp(−βH)/Z. By the assumption (b) the distribution function at any later time is
given by the same density operator. Then the quantity δ〈AH(t)〉 which describes deviation of 〈AH(t)〉
from equilibrium is given by

δ〈AH(t)〉 = −i

∫ t

−∞
dt′〈[AH(t), HH

ex(t′)]〉, (A.7)

within linear order in Hex. Equation (A.7) is called the Kubo formula of the linear response theory.
Let us write HH

ex(t′) in terms of an external field φ exp(−iωt′) coupled with an operator B(t′) as
HH

ex(t′) = −B(t′)φ exp(−iωt′) . Then eq.(A.7) gives

δ〈AH(t)〉 = χAB(ω) exp(−iωt)φ, (A.8)
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where the dynamical susceptibility χAB(ω) is given by

χAB(ω) = i

∫ t

−∞
dt′〈[AH(t), B(t′)]〉 exp[iω(t − t′)]. (A.9)

In the special case of the magnetic response against the external magnetic field with frequency ω and
wave number q, we obtain eq.(1.43). The superscript H has been omitted there.

If the external field is static the susceptibility is obtained simply by putting ω = 0. The resultant
static response corresponds to the adiabatic susceptibility as is clear by the derivation. If the system is
always in contact with the heat bath, on the other hand, the static response should be isothermal. In
order to obtain the isothermal susceptibility we write

exp[−β(H + Hex)] = exp(−βH)UT (β) (A.10)

and derive UT (β) up to first order in the static perturbation Hex. This is analogous to eq.(A.3) except
the boundary condition UT (0) = 1 and use of the imaginary time iλ with 0 < λ < β in the integral. The
result for the magnetic susceptibility is given by eq.(1.57) in Chapter I.



Appendix B

Spectral Representation and
Fluctuation-Dissipation Theorem

The retarded Green function with two physical observables A and B is defined as follows:

〈[A,B]〉(z) ≡ −i

∫ ∞

0

dt〈[A(t), B]〉eizt, (B.1)

where z lies in the upper half plane. As a special case one obtains the dynamical susceptibility as

χµν(q, ω) = −〈[Mµ(q),Mν(−q)]〉(ω + iδ). (B.2)

It is clear that 〈[A,B]〉(z) is analytic in the upper half plane of z since it is finite and is derivable any
number of times. This analyticity comes from the positive integration range and means the causality
that the response cannot precede the external perturbation. In terms of many-body eigenstates |n〉 and
|m〉 with energies En and Em, one can evaluate eq.(B.1) as

〈[A,B]〉(z) = Av
n

∑
m

AnmBmn

z − ωmn
[1 − exp(−βωmn)] (B.3)

where Avn is the thermal average over n and ωmn ≡ Em − En. Note that 〈[A,B]〉(z) can be extended
also to the lower half plane as an analytic function of z by eq.(B.3). This piece is in fact the advanced
Green function defined by

〈[A,B]〉(z) ≡ i

∫ 0

−∞
dt〈[A(t), B]〉eizt. (B.4)

the integral of which converges for z in the lower half plane. After all we see that singularities of
〈[A,B]〉(z) as defined by eq.(B.3) lie only on the real axis.

We introduce the spectral function IAB(ω) by

IAB(ω) = Av
n

∑
m

AnmBmn[1 − exp(−βω)]δ(ω − ωmn) =
∫ ∞

−∞

dt

2π
eiωt〈[A(t), B]〉. (B.5)

In terms of IAB(ω) the retarded Green function is expressed as

〈[A,B]〉(z) =
∫ ∞

−∞
dω

IAB(ω)
z − ω

, (B.6)

which is called the spectral representation or the Lehmann representation.
One then introduces the relaxation function (or the canonical correlation function) by

〈A(t);B〉 ≡ 1
β

∫ β

0

dλ〈A(t − iλ)B〉, (B.7)

and its Laplace transform

〈A;B〉(z) ≡
∫ ∞

0

dt〈A(t); B〉eizt. (B.8)
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This quantity gives the time development 〈A(t)〉ex when a constant external field coupled with B is
suddenly switched off at t = 0. Hence the name of relaxation function. Note that 〈A(t = 0);B〉 is
the static susceptibility, and that the statistical operator exp[−β(H + Hex)]/Z as appeared in eq.(A.10)
remains the same for 〈A(t > 0)〉ex. In terms of the spectral function, the relaxation function is given by

〈A(t);B〉 =
∫ ∞

−∞
dω

IAB(ω)
βω

e−iωt. (B.9)

as can be checked by taking matrix elements with respect to eigenstates. Hence we obtain a relation to
the Green function:

〈A;B〉(z) = (izβ)−1{〈[A,B]〉(z) − 〈[A,B]〉(0)}. (B.10)

Let Ḃ denote the time derivative of the operator B. The spectral function IAḂ(ω) is related to IAB(ω)
by IAḂ(ω) = iωIAB(ω) which is easily checked with use of eq.(B.5). Then the following identities can
be proved.

β〈A; Ḃ〉(z) = −〈[A,B]〉(z), (B.11)
β〈A(t); Ḃ〉 = i〈[A(t), B]〉. (B.12)

Finally one introduces the symmetrized correlation function by

〈{A(t), B}〉 ≡ 〈A(t)B + BA(t)〉. (B.13)

By taking matrix elements as in eq.(B.1) we obtain

〈{A(t), B}〉 =
∫ ∞

−∞
dω coth

(
βω

2

)
IAB(ω) exp(−iωt), (B.14)

where eq.(B.5) has been used. Of most physical interest is the case B = A†. The spectral function is
then a real positive quantity for positive ω and satisfies

IAA†(ω) = −IAA†(−ω) = − 1
π

Im〈[A,A†]〉(ω + iδ). (B.15)

In the case of t = 0 and B = A†, the left-hand side of eq.(B.14) describes the fluctuation of the quantity
A, while IAA† in the right-hand side describes the dissipation of energy by the linear response. Hence
eq.(B.14) is called the fluctuation-dissipation theorem.



Appendix C

Rayleigh-Schrödinger Perturbation
Theory and Higher-Order
Renormalization

C.1 Expansion of the Effective Hamiltonian

As discussed in Chapter 1, the effective Hamiltonian Heff in the Brillouin-Wigner perturbation theory
depends on the eigenenergy to be derived. This dependence becomes inconvenient if one wants to do
direct perturbation theory in higher order. The alternative scheme, called the Rayleigh-Schrödinger (RS)
perturbation theory, is designed to give Ω and hence Heff in a form which involves only eigenenergies
of H0. Thus the RS perturbation theory is free from the unknown energy Ei. In order to derive Heff in
the RS perturbation theory we write the Schrödinger equation in the form

(E − H0)ψ = Eψ − H0ΩPψ = V ΩPψ, (C.1)

where the index i to specify an eigenstate is omitted, and we used the property ΩPψ = ψ for an eigenstate
of H0 + V . Applying the projection operator P on both sides of eq.(C.1), and further applying Ω, we
obtain the alternative form:

Ω(E − H0)Pψ = Eψ − ΩH0Pψ = ΩPV ΩPψ, (C.2)

where we used the property PH0 = H0P . Subtracting eq.(C.2) from eq.(C.1), we obtain

[Ω,H0]Pψ = (1 − ΩP )V ΩPψ. (C.3)

We make the power series expansion:

Ω = Ω0 + Ω1 + Ω2 + . . . , (C.4)

where Ωn denotes the O(V n) contribution with Ω0 = 1. Comparing terms with the same order of
magnitudes on both sides of eq.(C.3), we obtain

[Ωn,H0] = QV Ωn−1 −
n−1∑
j=1

ΩjPV Ωn−j−1 (C.5)

Then the effective Hamiltonian is also expanded as

Heff = P (H0 + V )P + H2 + H3 + . . . , (C.6)

with Hn = PV Ωn−1P for n ≥ 2. Matrix elements of some lower-order parts are explicitly given by

〈a|H2|b〉 = 〈a|V (ϵb − H0)−1QV |b〉, (C.7)
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and

〈a|H3|b〉 = 〈a|V 1
ϵb − H0

QV
1

ϵb − H0
QV |b〉 −

∑
c

〈a|V 1
ϵb − H0

1
ϵc − H0

QV |c〉〈c|V |b〉. (C.8)

where Q = 1 − P and all states represented by |a〉, |b〉 and |c〉 belong to the model space.
In the Rayleigh-Schrödinger perturbation theory, there are two kinds of terms in Hn with n ≥ 3; the

first one is of the same form as the one in the Brillouin-Wigner perturbation theory (except for the
eigenenergy in the denominator), and the second constitutes the correction terms which originate from
the second term in eq.(C.5) or in eq.(C.8). The latter terms play an important role to accomplish the
linked-cluster expansion. Namely by removing the restriction that the number of local electron is unity
at any stage of intermediate states, one can apply a variant of Wick’s theorem to prove the cancellation
of unlinked parts in the Rayleigh-Schrödinger perturbation theory [2]. The final form of the effective
Hamiltonian conserves the number of local electrons in each order of perturbation. Hence in the model
space with one and only one local electron which obeys either the Fermi or Bose statistics, one can
reproduce the actual situation in the Kondo-like impurity model with the local number constraint.

In order to deal with the energy denominator in the second term of eq.(C.8), the concept of the “folded
diagram” is useful. Namely one draws a local electron line propagating from left to right to represent the
presence of P in the intermediate state. An example is shown in Fig.C.2. Then the energy denominator
is associated with difference of left-going energies and the right-going ones just as in the other diagrams
such as Fig.C.1. By comparing the energy denominators given by eq.(C.8), and those given by the rule
mentioned above, one can confirm that both give identical results.

C.2 Renormalization of the Kondo Model

In Chapter 2 we described the lowest-order renormalization of the Kondo model where the fixed point of
the model corresponds to infinity of the exchange coupling. Because of the infinite coupling constant, all
higher-order terms become large and there is no analytical way to control the renormalization. However,
in the multi-channel Kondo model given by eq.(2.102) with a large number n of the orbitals, the third-
order renormalization describes the non-trivial fixed point correctly [3]. The reason for this is explained
below.

In order to perform renormalization explicitly we first introduce the approximation to set ϵb = 0 in
eq.(C.8). This approximation is equivalent to neglect the energy dependence of the effective interaction.
Then in the third-order we deal with effective Hamiltonian given by

HL
3 = V (H−1

0 QV )2 +
∑

c

V H−1
0 (ϵc − H0)−1QV PV. (C.9)

Let us assume the constant density of states for n conduction bands each of which per spin is given by

ρc(ϵ) = (2D)−1

for |ϵ| < D and zero otherwise. The model space consists of the local spin and such conduction electrons
whose energy ϵ is within the range [−D + |dD|, D − |dD|] where dD(< 0) is the infinitesimal change of
the cut-off energy. In order to minimize the number of electrons to deal with, the Fermi sea is chosen
as the vacuum for conduction electrons, and excitations are described as particles and holes generated
from the vacuum.

In the third-order effective Hamiltonian, we have to consider only two diagrams shown in Figs.C.1 and
C.2. It can be shown by the use of eq.(C.9) that other diagrams without loop of conduction electrons
describe shift of the ground-state energy, and do not contribute to renormalization [4]. In Fig.C.1, the
energy denominators are obtained by associating the excitation energy D with one of two lines in the
electron loop. The result of energy integration is given by∫ 0

−D

dϵ′
1

(−D + ϵ′)2
+

∫ D

0

dϵ
1

(−D − ϵ)2
=

1
D

. (C.10)

On the other hand the product of the spin operators take the form SαSβSγTr(sαsγ)sβ , where the trace
is over the spin states of conduction-electrons. The folded diagram has the same energy denominators
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Figure C.1: An exchange scattering diagram in the third order. The solid line shows a conduction-electron
state, while the dashed line the local electron state making up the impurity spin. The projection operator
Q requires one of two conduction-electron states making a loop to have energies near the band edges.

Figure C.2: The third-order folded diagram. The assignment of energy denominators are explained in
the text.

as given by eq.(C.10), and its spin part is given by SαSγSβTr(sαsγ)sβ . Then contributions from the two
diagrams combine to give

Sα[Sβ , Sγ ]Tr(sαsγ)sβ = −1
2
S · s. (C.11)

where we use the identity [Sα, Sβ ] = iϵαβγSγ .
Adding the second-order contribution derived in Chapter 2, we obtain the scaling equation:

dg

dl
= −g2 +

1
2
g3. (C.12)

where l = lnD and the dimensionless coupling constant g = Jρc has been introduced. Note that the
present scheme of renormalization extends the the poor man’s scaling [5] with a different idea. In the
poor man’s scaling one considers the t-matrix of the exchange scattering which involves infinite number
of perturbation terms. To the contrary, the effective interaction in the present scheme does not have
intermediate states belonging to the model space. In the case of n-fold degenerate conduction band,
each loop of conduction electron lines acquires the factor n by summing over degenerate orbitals. This
loop appears from the third-order diagrams as shown in Figs.C.1 and C.2. We then obtain instead of
eq.(C.12)

dg

dl
= −g2 +

n

2
g3, (C.13)

The fixed point of the renormalization group is given by g = gc = 2/n which is small in the case of large
n. Thus the fixed point is within the reach of the perturbative renormalization. If one considers still
higher order diagrams, one would have the expansion [6, 7]:

dg

dl
= −g2 +

n

2
g3 + (an + b)g4 + (cn2 + dn + e)g5 + ... (C.14)
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where a to e are numerical constants independent of n. Since the total contribution from the third and
higher-order terms in the right-hand side is of O(1/n3) with g = O(1/n), the first two terms of O(1/n2)
are sufficient in deriving the fixed point in the leading order of 1/n.



Appendix D

Spectral Shape and Relaxation Rate

We introduce an inner product 〈A|B〉 between the two operators A and B by

〈A|B〉 =
∫ β

0

dτ〈exp(τH)A exp(−τH)B〉 ≡ β〈A;B〉, (D.1)

where the canonical correlation function 〈A;B〉 has been defined by eq.(B.7). The inner product corre-
sponds to the static susceptibility χAB. By introducing the Liouville operator L as LA ≡ [H,A], simple
calculation shows that

〈A|L|B〉 ≡ 〈A|LB〉 = 〈LA|B〉. (D.2)

Hence L is hermite with respect to this inner product. The dynamical susceptibility which is defined by
eq.(A.9) is written as

χAB(z) = 〈A| L
L − z

|B〉. (D.3)

The relaxation function defined by eq.(B.8) is represented by

〈A;B〉(z) = 〈A| i

z − L|B〉 ≡ CAB(z). (D.4)

We now consider the dynamical magnetic susceptibility χM (z) by setting A = B = M in eq.(D.3)
with M being the z-component of magnetic moment. The projection operator P is defined by

P ≡ |M〉χ−1
M 〈M |, (D.5)

where χM is the static susceptibility given by χM = 〈M |M〉. It is obvious that P2 = P = P† which is a
necessary condition for a projection operator. We also introduce a projection operator Q complementary
to P by Q = 1 − P. In order to obtain the relaxation function CM (z) we have to invert the operator
z − L. We note the following identity for the 2 × 2 matrix:[(

a b∗

b c

)−1
]

11

=
1

a − b∗c−1b
, (D.6)

which can be generalized to the case where the entries c and b are a matrix and a column vector,
respectively. Namely we identify

a = P(z − L)P, b = −QLP, c = Q(z − L)Q. (D.7)

Then we obtain the following result [8]:

CM (z) = iχM [z − Ω + iΓ(z)]−1 (D.8)

where
Ω = χ−1

M 〈M |L|M〉, (D.9)
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describes the systematic motion corresponding to precession. The effect of random force is described by
Γ(z) which is given by

Γ(z) = χ−1
M 〈QṀ | i

z −QLQ|QṀ〉, (D.10)

where Ṁ = iLM .
This exact expression is very useful to evaluate relaxation rates in the lowest-order perturbation theory.

Let us assume that the zeroth-order Hamiltonian H0 of the total system H = H0 + H1 conserves M .
Then up to O(H2

1 ) we can approximate

Γ(z) = χ−1
M 〈[H1,M ]|i(z − L0)−1|[H1, M ]〉 + o(H2

1 ), (D.11)

where L0 is the Liouville operator corresponding to H0. This result can be derived by noting 〈M |Ṁ〉 =
〈[M, M ]〉 = 0 and QṀ = Ṁ . As a physical relaxation function we put z = ω + iδ. The imaginary part
of Γ(ω) describes a shift in the resonance frequency. The real part, on the other hand, corresponds to
the magnetic relaxation rate. The lowest-order result for it is given by

Γ(ω) = πχ−1
M 〈[H1,M ]|δ(ω − L0)|[H1, M ]〉. (D.12)

Usually we have L0Ṁ ̸= 0. In this case Γ(z) is a smooth function of z = ω + iδ around ω = 0 in the
upper half plane. As long as ω is much smaller than the characteristic frequency of L0Ṁ , we may put
ω = 0 and neglect ImΓ. In this case the spectral shape takes the Lorentzian form:

1
ω

ImχM (ω) =
χMΓ

ω2 + Γ2
. (D.13)

It is straightforward to generalize the above formalism to the case where a set of operators Ai (i =
1, 2, . . .) constitute slow variables. The projection operator to this set is defined by

P ≡
∑
ij

|Ai〉χ−1〈Aj |, (D.14)

where χ is the susceptibility matrix an element of which is given by χij = 〈Ai|Aj〉. Then we obtain the
following identity for the relaxation function matrix C(z):

C(z) = iχ[z − Ω + iΓ(z)]−1, (D.15)

where elements of the matrix Ω is given by

Ωij =
∑

l

(χ−1)il〈Al|L|Aj〉, (D.16)

and those of Γ(z) by

Γij(z) =
∑

l

(χ−1)il〈QȦl| i

z −QLQ|QȦj〉. (D.17)

We now turn to a general spectral shape of χM (z) including non-Lorentzian cases. The relaxation
function in the real time domain is written as

〈M(t)|M〉 = 〈M | exp(−iLt)|M〉 ≡ 〈〈exp(−iLt)〉〉〈M |M〉, (D.18)

where we have introduced the average 〈〈· · ·〉〉. The spectral moments 〈ωn〉 (n = 0, 1, 2 . . .) are given by

〈ωn〉 ≡
∫ ∞

−∞

dω

π
ωn−1Im

χM (ω)
χM

= 〈〈Ln〉〉. (D.19)

Thus the full set of moments completely determine the spectrum. Corresponding to the average 〈〈· · ·〉〉
we can define the cumulant average 〈〈· · ·〉〉c [9]. Namely,

〈〈exp(−iLt)〉〉 = exp[〈〈exp(−iLt)〉〉c − 1] ≡ exp[−i〈ω〉t + X(t)]. (D.20)
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The X(t) is determined by the set of cumulants 〈ωn〉c ≡ 〈〈Ln〉〉c as

X(t) =
∞∑

n=2

(−it)n

n!
〈ωn〉c. (D.21)

Thus the full set of cumulants also determine the spectrum completely. The particularly important
quantity is the second order cumulant

〈ω2〉c = 〈〈L2〉〉 − 〈〈L〉〉2. (D.22)

The function X(t) starts from zero at t = 0 and should decrease with increasing t. We introduce a
characteristic time τR in X(t) such that ReX(τR) ∼ −1. Then the relaxation function becomes negligible
for t ≫ τR. For large enough t, on the other hand, X(t) should behave as

X(t) → −i(δω − iΓ)t, (D.23)

with δω being the shift of the resonance frequency. The long-time behavior is non-analytic in t because of
the dissipation in the system. Hence this behavior does not follow from the first order term in eq.(D.21).
A characteristic time τC is defined as the one after which the short time behavior crosses over to the
long time one given by eq.(D.23).

We consider the extreme cases: (i) τC ≫ τR, and (ii) τC ≪ τR assuming for simplicity 〈ω〉 = δω = 0.
In the case (i) the short time behavior of X(t) determines the spectrum. Then we can rely on the
expansion given by eq.(D.21). The resultant spectrum is of the Gaussian shape given by

Im
χM (ω)

ω
=

√
π

2
χM

D
exp[−1

2

( ω

D

)2

], (D.24)

where
D2 = χ−1

M 〈Ṁ |Ṁ〉, (D.25)

and we have D ∼ τ−1
R . It is possible to apply the perturbation theory to derive D. The lowest-order

result is used in estimating T2G in Chapter 1. In the case (ii), on the contrary, the long-time behavior
dominates the spectrum. This gives rise to the Lorentzian shape. The relaxation rate in the lowest order
perturbation theory is given by eq.(D.12) with ω = 0, which is roughly given by Γ ∼ D2τC ∼ τC/τ2

R.
The relaxation rate is smaller than the case (i) with the same magnitude of D. According to specific
mechanism which controls τC , this reduction of the relaxation rate is called motional narrowing or
exchange narrowing.





Appendix E

Green Function in the Imaginary
Time

We introduce the Matsubara representation by

eτHAe−τH ≡ A(M)(τ) (E.1)

with −β < τ < β. This corresponds to the Heisenberg representation in the imaginary time τ . Then
the Matsubara Green function DAB[τ ] is defined by

DAB[τ ] = −〈TτA(M)(τ)B〉 =
{ −〈A(M)(τ)B〉, (τ > 0)

−〈BA(M)(τ)〉, (τ < 0)
(E.2)

where Tτ is the time-ordering symbol. If A and B are generalized to fermion operators, the Green
function becomes +〈BA(M)(τ)〉 for τ < 0 as discussed later.

By taking matrix elements one can show that the Green function is periodic in τ with period β, i.e.

DAB[τ ] = −
∫ ∞

−∞
dωIAB(ω)

e−(β+τ)ω

1 − eβω
= DAB[τ + β]. (E.3)

with −β < τ < 0. Therefore one can make a Fourier transform

DAB[τ ] = T
∑

n

DAB(iνn) exp(−iνnτ) (E.4)

where iνn = 2πinT with n integer is called (even) Matsubara frequency. The Fourier component
DAB(iνn) is calculated as

DAB(iνn) =
∫ β

0

dτDAB[τ ] exp(iνnτ) =
∫ ∞

−∞
dω

IAB(ω)
iνn − ω

. (E.5)

Thus we obtain a remarkable relation

DAB(iνn) = 〈[A, B]〉(iνn). (E.6)

Namely the Matsubara Green function with νn > 0 is continued analytically to the retarded Green
function, and with νn < 0 to the advanced Green function [10].

In the case of fermionic operators ψA and ψ†
B , we define the Matsubara Green function GAB[τ ] as

follows:

GAB[τ ] = −〈Tτψ
(M)
A (τ)ψ†

B〉 =

{
−〈ψ(M)

A (τ)ψ†
B〉 (τ > 0)

〈ψ†
Bψ

(M)
A (τ)〉 (τ < 0).

(E.7)

The Green function now has the anti-periodic property with −β < τ < 0

GAB[τ ] = −
∫ ∞

−∞
dϵρAB(ϵ)

e−(β+τ)ω

1 + eβω
= −GAB[τ + β], (E.8)
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where the spectral function ρAB(ϵ) is defined by

ρAB(ϵ) = Av
n

∑
m

(ψA)nm(ψ†
B)mn[1 + exp(−βϵ)]δ(ϵ − ϵmn). (E.9)

The Fourier transform GAB(iϵn) is now with odd Matsubara frequency iϵn = πi(2n+1)T with n integer
and has the spectral representation

GAB(iϵn) =
∫ β

0

GAB[τ ] exp(iϵnτ) =
∫ ∞

−∞
dϵ

ρAB(ϵ)
iϵn − ϵ

. (E.10)

The analytic continuation GAB(z) with z in the upper half-plane corresponds to the retarded Green
function, i.e.

GAB(z) = −i

∫ ∞

0

dteizt〈{ψA(t), ψ†
B}〉 (E.11)

with the anticommutator. If z is in the lower half-plane GAB(z) gives the advanced Green function

GAB(z) = +i

∫ 0

−∞
dteizt〈{ψA(t), ψ†

B}〉. (E.12)

The spectral intensity ρAB(ϵ) can be given also in terms of the integral

ρAB(ϵ) =
∫ ∞

−∞
dteiϵt〈{ψA(t), ψ†

B}〉. (E.13)



Appendix F

Path Integral Representation of the
Partition Function

F.1 Grassmann Numbers and Coherent States

The basic property of the Grassmann numbers is that they anticommute in contrast to the c-number.
Let η1 and η2 be Grassmann numbers. Then we require

η1η2 = −η2η1. (F.1)

We also require that the Grassmann numbers commute with any c-number and anticommute with fermion
creation and annihilation operators. The complex conjugate has the following property:

(η1η2)∗ = η∗
2η∗

1 = −η∗
1η∗

2 , (F.2)

which may look curious if Grassmann numbers are real, but assures the reality condition (η∗
1η1)∗ = η∗

1η1.
The derivative of Grassmann numbers is defined by

∂

∂ηi
ηj = δij , (F.3)

which is analogous to the usual derivative. We note, however, that the differential dηi is also a Grassmann
number. Then we introduce the definite integrals

∫
dη1 and

∫
dηη which are sufficient for the single

variable because higher powers of η vanish. The first integral is the Grassmann number, while the
second commutes with all other Grassmann numbers and hence is a c-number. In order to make the two
integrals invariant against the linear shift η → η + ξ with ξ a constant Grassmann number, we require∫

dηη = 1,

∫
dη1 = 0. (F.4)

The first equality sets the normalization of the integral. The second one, where 0 is a Grassmann number,
follows from the invariance

Let us take a fermionic single-particle state |1〉 = f†|0〉 where f† denotes the creation operator. The
coherent state |η〉 associated with a complex Grassmann number η is constructed by

|η〉 = exp(f†η)|0〉 = (1 + f†η)|0〉 = |0〉 − η|1〉. (F.5)

The coherent state is a superposition of zero- and single-particle states. It is the eigenstate of the
annihilation operator f . In fact the action of f upon |η〉 gives

f |η〉 = η|η〉. (F.6)

The hermitian conjugate of this equation is 〈η| = 〈η|f†. Furthermore the inner product of the coherent
states is given by

〈η1|η2〉 = exp(η∗
1η2) (F.7)
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Thus we obtain for an operator function F (f†, f) which is any of f or f† or f†f

〈η1|F (f†, f)|η2〉 = F (η∗
1 , η2) exp(η∗

1η2). (F.8)

Of most importance is the relation∫
dη∗dη|η〉〈η| exp(−η∗η) = |0〉〈0| + |1〉〈1| = 1, (F.9)

which is the identity operator. This relation is used in the next section to set up the path integral
representation of the partition function. It is clear that the coherent states span the overcomplete set
for |0〉 and |1〉.

F.2 Partition Function

For illustrative purpose of using the Grassmann integration technique, we begin with a trivial Hamilto-
nian H(f†, f) = ϵf†f for which the (grand) partition function Z is given by Z = 1 + exp(−βϵ). Here
the chemical potential is chosen as the origin of energy.

We consider the partition function for a Hamiltonian H and represent the trace by the integral over
coherent states

Z =
∫

dη∗
1dη1〈η1|e−βH | − η1〉 exp(−η∗

1η1), (F.10)

where we have used eq.(F.9) and 〈n|η〉〈η|e−βH |n〉 = 〈η|e−βH |n〉〈n| − η〉 with n = 0 or 1. We decompose
exp(−βH) ∼ (1 − δτH/M)M , with δτ = β/M for a large integer M (≫ 1) and insert the identity given
by eq.(F.9) (M − 1) times between each decomposed factor. This is often called the Suzuki-Trotter
decomposition. Then we obtain with use of eq.(F.8)

Z =
∫ M∏

i=1

dη∗
i dηiR(η∗

1 , η2) exp[−η∗
1(η1 −η2)]R(η∗

2 , η3)×· · · exp[−η∗
M (ηM −ηM+1)]R(η∗

M , ηM+1), (F.11)

where R(η∗
1 , η2) = 1 − δτH(η∗

1 , η2) ∼ exp[−δτH(η∗
1 , η2)] and ηM+1 ≡ −η1. In the limit of large M , one

may write ηi as η(τ) for the range 0 < τ < β with the boundary condition η(β) = −η(0). Then one can
make a Fourier expansion of η(τ) using the odd Matsubara frequency. Provided the highest frequency
appearing in the summation is much smaller than (δτ)−1, one may replace the difference η(τi)− η(τi+1)
by δτ∂η(τ)/∂τ .

It is also possible to represent the partition function with many degrees of freedom and with interpar-
ticle interactions as an integral over Grassmann numbers. Instead of single η(τ), we have to introduce
for each single-particle state α the corresponding Grassmann variable ηα. The multiple integrals over
Grassmann numbers is called the functional integral or the path integral and is written as Dη∗Dη . The
latter name comes from the analogy to the path integral in single-particle quantum mechanics.

As is clear in the derivation, the Hamiltonian must have the normal ordered form where the creation
operators stand to the left of annihilation operators. Then one may extend eq.(F.8) to many variables
as

〈{ηα}|F ({f†
α}, {fα})|{η′

α}〉 = F ({η∗
α}, {η′

α}) exp(
∑
α

η∗
αη′

α). (F.12)

The final formula for a general normal ordered Hamiltonian turns out to be

Z =
∫

Dη∗Dη exp(−S), (F.13)

S =
∫ β

0

dτ [
∑
α

η∗
α

∂

∂τ
ηα + H(τ)] (F.14)

The quantity S is often called the action and the integrand in S the Lagrangian in analogy to the real
time formulation of the path integral.



Appendix G

Many-Body Perturbation Theory

G.1 Gaussian Integral over Grassmann Numbers

By noting the identity exp(−η∗Aη) = 1 − η∗Aη with A a c-number, we obtain the simplest Gaussian
integral over the Grassmann numbers η and η∗ as∫

dη∗dη exp(−η∗Aη) = A. (G.1)

Similarly with ξ a Grassmann number one can prove∫
dη∗dη exp(−η∗Aη + ξ∗η + η∗ξ) = A exp(ξ∗A−1ξ), (G.2)

either by expanding the exponential or by the change η → η − A−1ξ, η∗ → η − ξ∗A−1 of integration
variables. These results can be extended to the case of many variables. Namely for an hermitian
c-number matrix A we obtain ∫ ∏

i

dη∗
i dηi exp(−

∑
ij

η∗
i Aijηj) = det A, (G.3)

which can be checked by diagonalizing the matrix A by a unitary transformation and recognizing that
det A is the product of eigenvalues. Equation (G.3) should be compared with the usual Gaussian in-
tegration over N c-numbers. The latter gives πN det A−1. Similarly as the multi-variable extension of
eq.(G.2) we get∫ ∏

i

dη∗
i dηi exp

[
−

∑
ij

η∗
i Aijηj +

∑
i

(ξ∗i ηi + η∗
i ξi)

]
= det A exp(−

∑
ij

ξ∗i Gijξj) ≡ Z(ξ∗, ξ) (G.4)

with G = −A−1.
We introduce the average of Grassmann numbers by the relation

〈η∗
i ηj〉0 ≡

∫ ∏
m

dη∗
mdηm η∗

i ηj exp(−
∑
ij

η∗
i Aijηj)/det A. (G.5)

This average is easily evaluated by taking derivative of Z(ξ∗, ξ). Namely we have

〈η∗
i ηj〉0 ≡ − lim

ξ∗,ξ→0

1
Z

∂2

∂ξi∂ξ∗j
Z(ξ∗, ξ) = Gji. (G.6)

Thus there is a correspondence ηj → ∂/∂ξ∗j , η∗
i → −∂/∂ξi in taking the average. We can generalize this

result to averages involving 2n Grassmann variables as follows:

〈η∗
1ηn+1η

∗
2η∗

n+2 . . . η∗
nη2n〉0 =

∑
P

sgnP Gn+1,P (1)Gn+2,P (2)G2n,P (n), (G.7)

193



194 APPENDIX G. MANY-BODY PERTURBATION THEORY

where P denotes a permutation of n variables, and the sign factor sgnP accounts for the anticommuting
property. This relation is equivalent to Wick’s theorem as will be explained shortly.

We interpret the set variables ηi as representing not only the set of N single particle states but the set
of M imaginary times between 0 and β generated by the Suzuki-Trotter decomposition . For example
we consider the trivial case of H = ϵf†f with N = 1. Then the integral for Z is evaluated as

Z = detτ

(
∂

∂τ
+ ϵ

)
, (G.8)

where the determinant is for the M ×M matrix with M going to infinity. The meaning of the derivative
becomes clear if we first rewrite

Z = exp
[
trτ ln β

(
∂

∂τ
+ ϵ

)]
, (G.9)

and use the complete set of anti-periodic functions exp(−iϵnτ)/
√

β in taking the trace. Multiplication
of β for the argument of the logarithm is only to make the argument dimensionless. The exponent
corresponds to lnZ = −βΩ which becomes

−βΩ =
∑

n

lnβ(−iϵn + ϵ). (G.10)

This sum is actually divergent and does not reproduce the correct answer ln[1+exp(−βϵ)]. The divergence
originates from the replacement of the difference in eq.(F.11) by the differential. In practical application
to be explained below, this difficulty is not serious because one can use a reference state for which the
thermodynamic potential is derived without using the path integral. Then the deviation ∆Ω from this
reference state is convergent. Alternatively one can absorb the divergence by requiring that both Ω and
∂Ω/∂ϵ = 〈f†f〉 go to zero as ϵ → ∞. Then using∑

n

(iϵn − ϵ)−2 = β2eβϵ/(eβϵ + 1)2, (G.11)

and integrating twice with respect to ϵ we obtain the correct result.

G.2 Wick’s Theorem

The path integral representation applies also to Green functions. By using the Heisenberg representation
fα(τ) = exp(τH)f exp(−τH) in the imaginary time (Matsubara representation) with a general normal
ordered Hamiltonian H, one can show the equivalence of averages:

〈Tτf†
α(τ1)fβ(τ2)〉 =

∫
Dη∗Dη η∗

α(τ1)ηβ(τ2) exp(−S)/Z ≡ 〈η∗
α(τ1)ηβ(τ2)〉, (G.12)

the left-hand side of which is the Green function. This equivalence can be proved for the case of τ1 > τ2

by the Trotter decomposition of

exp[−(β − τ1)H]f†
α exp[−(τ1 − τ2)H]fβ exp[−τ2H]. (G.13)

The other case of τ1 < τ2 can be done similarly. Note that Tτ does not appear in the average of η
variables.

It is convenient to introduce the partition function Z(ξ∗, ξ) in the presence of the Grassmann external
fields ξα(τ)∗, ξα(τ) . They appear in the Lagrangian as ξ†η + η†ξ where the variables are regarded
as vectors with state and time indices. In a particular case of a noninteracting Hamiltonian H =∑

αβ hαβf†
αfβ , the matrix element of −A is given by iϵnδαβ − hαβ where we have made the Fourier

transform to Matsubara frequencies. Then we can use the result of Gaussian integration explained
above. For example the inverse matrix −A−1 = G is nothing but the Green function matrix. In analogy
to eq.(G.6) one can show

〈η∗
α(τ1)ηβ(τ2)〉 = − lim

ξ∗,ξ→0

1
Z

δ2

δξα(τ1)δξ∗β(τ2)
Z(ξ∗, ξ) = Gβα(τ2 − τ1), (G.14)
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where the last quantity denotes the Green function.
There is now a correspondence

ηα(τ) → δ/δξ∗α(τ), η∗
α(τ) → −δ/δξα(τ) (G.15)

in taking the average. By using this relation and eq.(G.4) for Z(ξ∗, ξ), one can derive the Wick’s theorem
as follows:

〈Tτf†(τ1)f(τn+1) . . . f†(τn)f(τ2n)〉 =
∑
P

sgnP G(τn+1 − τP (1)) . . . G(τ2n − τP (n)), (G.16)

where the index α for single-particle states has been omitted for notational simplicity. The result at
finite temperature is also called the Bloch-de Dominicis theorem. Use of the correspondence given by
eq.(G.15) for the Hamiltonian with two-body interaction V (f†, f) leads to formal representation of the
partition function Z in terms of the one Z0(ξ∗, ξ) without V but with external fields as [11]

Z = − lim
ξ∗,ξ→0

exp

[
−

∫ β

0

dτV (
δ

δξ
,− δ

δξ∗
)

]
Z0(ξ∗, ξ). (G.17)

By expanding this expression in terms of V and using Wick’s theorem, one can derive the perturbation
theory in terms of Feynman diagrams.

Alternatively we consider the partition function without external fields writing the action S0 + S1

where S1 =
∫ β

0
dτV (τ). The partition function are written as

Z = Z0〈exp(−S1)〉0, (G.18)

where Z0 comes from S0, and 〈· · ·〉0 denotes the average in term of the unperturbed action. Taking the
logarithm of eq.(G.18) we obtain the shift Ω1 of the thermodynamic potential as

Ω1 = −T [〈exp(−S1)〉c − 1], (G.19)

where 〈· · ·〉c is the unperturbed cumulant average as explained in Appendix D. In terms of Feynman
diagrams, the cumulant average eliminates all unlinked parts in each order of S1. Hence eq.(G.19) gives
the linked-cluster expansion.

G.3 Variational Property and the Luttinger-Friedel Sum Rule

We consider a situation where a coupling∫ β

0

dτ

∫ β

0

dτ ′f†
α(τ)Uαβ(τ − τ ′)fβ(τ ′), (G.20)

to the fictitious external field Uαβ(τ − τ ′) is present in the system. Uαβ(τ − τ ′) may be viewed as a
Gaussian average of product of two external fields. In the following we use a simplified notation where
tr means the trace over both spatial and imaginary-time degrees of freedom.

With slight change δU in U , the thermodynamic potential Ω varies by the amount

βδΩ(U) = tr(GδU), (G.21)

where G is the Green function which is a matrix in space and time indices. We now eliminate δU in
favor of the changes δG of the Green function and δΣ of the self-energy matrix Σ. With use of the Dyson
equation G−1 = g−1 − U − Σ where g is the bare green function, we obtain

GδU = −Gδ(G−1 + Σ) = −δ(lnG−1 + GΣ) + (δG)Σ. (G.22)

The trace of the last term in the right hand side is given as the change δΦ of certain quantity Φ. In the
diagrammatic language, Φ is given by the sum of skeleton diagrams for Ω. A skeleton diagram is defined
as such that does not include any self-energy parts as subdiagrams. This identification makes it possible
to integrate the differential relation (G.21). We obtain

β(Ω{G} − Ω0) = Φ{G} − tr(ΣG) − tr ln(G−1g), (G.23)
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Figure G.1: Deformation of the integration contour from along the imaginary axis to the one encircling
the negative real axis.

where Ω0 is the thermodynamic potential for the noninteracting system. Note that there is no explicit
appearance of U in eq.(G.23). The Ω as a functional of G is stationary against the change of G, as can be
checked easily [12, 13]. This variational property is very analogous to that in the Helmholtz free energy
F against the change in the chemical potential, or the Gibbs energy G against the change in the number
of particles [14]. In all cases, the Legendre transformation of natural variables is involved behind the
variational property.

Let us consider the zero-temperature limit of eq.(G.23) in the imaginary frequency domain. The
contribution of a given diagram to Φ remains the same if the internal frequency iϵ of a Green function
is increased. In other words we have for this change

δΦ = δϵtr(Σ
∂G

∂ϵ
) = 0. (G.24)

By partial integration the above equality leads to

tr(G
∂Σ
∂ϵ

) = 0. (G.25)

With this setup we represent the total number N of electrons in the system as

N = tr exp(iϵ0+)G = −tr exp(iϵ0+)
∂ ln G

i∂ϵ
. (G.26)

where we have used eq.(G.25) in the second equality. For definiteness we first consider the homogeneous
system and replace the trace by

tr →
∑
k

∫ ∞

−∞

dϵ

2π
=

∑
k

∫
C

dω

2πi
, (G.27)

with iϵ = ω and the integration contour C is shown in Fig.G.1. Here we have utilized the convergence
factor exp(iϵ0+) in deforming the integration contour.

Then we obtain

N =
∑
k

∫ 0

−∞

dω

π
Im

∂ lnG(k, ω + iδ)
∂ω

=
1
π

Im
∑
k

ln[−G(k, i0+)], (G.28)

The minus sign with G(k, i0+) comes from the contribution at ω → −∞. In the Fermi liquid, the
self-energy Σ(k, i0+) becomes real because of the restriction in the available damping processes. Hence
G(k, i0+) is also real. If G(k, i0+) is positive, which is the case for small |k|, the phase Im ln[−G(k, i0+)]
of the Green function is π. On the other hand G(k, i0+) becomes negative as |k| goes to infinity. The
surface of k where G(k, i0+) changes sign is nothing but the Fermi surface. Thus eq.(G.28) tells us
that the volume inside the Fermi surface of the interacting system remains the same as that of the
noninteracting one with the same number N of particles [12]. This property is called the Luttinger sum
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rule which distinguishes the itinerant f electrons from the localized ones with no participation in the
Fermi volume.

We remark that the sum rule can in fact be applied to systems with finite magnetization or without
translational symmetry. By shifting the internal energy for up-spin Green functions only, we obtain
eq.(G.24) for the up spin. This is because the Coulomb interaction does not mix different spin compo-
nents. Then we obtain eq.(G.25) for each spin component. In terms of the Green function Gσ(k, ω + iδ)
with z-component σ/2 of spin, the total magnetization M = N↑ − N↓ is given by

M =
1
π

Im
∑
kσ

σ ln[−Gσ(k, i0+)]. (G.29)

For systems without the translational invariance, the most successful application is the proof of the
Friedel sum rule for the Anderson model [15]. If the perturbation theory converges in the latter case we
have the relation

nf =
2
π

Im ln[−Gf (i0+)], (G.30)

where nf is the number of f electrons and Gf (i0+) is the f-electron Green function at the Fermi surface.
The above relation is called the Friedel sum rule. The number nf is not necessarily an integer in this
case.

G.4 Path Integral over Auxiliary Fields

Instead of dealing with the electron-electron interaction as it stands, it is often useful to introduce
auxiliary fields so that the electrons interact via these fields. Consider the operator

exp(−δτUn↑n↓), (G.31)

which appears in eq.(F.11) for the partition function. We here concentrate on a particular site and have
discarded the site index for simplicity. The operator n↑n↓ can be written in alternative forms as:

n↑n↓ =
1
2
n − 2(Sz)2 =

1
2
n − 2

3
S · S. (G.32)

The density term with n = n↑ + n↓ becomes a constant by the site summation and we concentrate first
on the spin term 2(Sz)2. We use the following identity:

exp[Ay2] =
∫ ∞

−∞

dx√
2πA

exp[−x2

A
− 2xy], (G.33)

with A > 0. In the case of negative A, the integration over x runs from −i∞ to i∞. This identity is
applied to each factor in eq.(F.11) for the partition function with

A = 2U, y =
√

δτSz, x =
√

δτφ. (G.34)

We then obtain the following expression for the Hubbard model:

Z =
∫

Dη∗DηDφ exp[−
∫ β

0

dτL(τ)], (G.35)

L(τ) = L0(τ) +
1

2U

∑
i

φi(τ)2 + 2
∑

i

φi(τ)Sz
i (τ) = L0(τ) + Lφ(τ), (G.36)

where L0 is the Lagrangian without interaction, and we have discarded the constant term in the La-
grangian. The procedure of introducing the auxiliary fields φi is called the Hubbard-Stratonovich trans-
formation.

One can perform the integration over Grassmann numbers exactly because the action is bilinear with
respect to them. The result is given by

Z =
∫

Dφ exp

[
−

∫ β

0

dτ
∑

i

1
2U

φi(τ)2 + tr ln(g−1 − φσz)

]
, (G.37)
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where tr is the trace over imaginary time and space, and g in the logarithm is the unperturbed green
function matrix. Thus the original Fermion problem is reduced to another one with fluctuating magnetic
field φ.

The spin-spin correlation function in the imaginary time is given by

〈TτSz(τ)Sz(τ ′)〉 = Z−1

∫
Dη∗DηDφ exp[−

∫ β

0

dτL0(τ)]
∂2

4∂φi(τ)∂φj(τ ′)
exp[−

∫ β

0

dτLφ(τ)] (G.38)

Thus ∂/∂φi acts like the spin operator, which is natural since φi has a meaning of a fluctuating magnetic
field conjugate to Sz

i . In the present case of the Gaussian distribution of φi, one can make partial
integration in eq.(G.38) and obtain for the magnetic susceptibility

χ(q, iν) =
1
U

[
1
U
〈|φ(q, iν)|2〉 − 1

]
, (G.39)

where we have introduced the Fourier transform φ(q, iν) of φi(τ) and 〈. . .〉 means the statistical average.
This equation shows that the field φi(τ) also has the meaning of fluctuating magnetization upon proper
scaling and subtraction. The subtraction removes the part of 〈|φ(q, iν)|2 which remains in the high
frequency limit.

As the simplest application of the above formalism, we derive the RPA susceptibility. We expand the
logarithm in eq.(G.37) up to second order in φ. Then after Fourier transform we obtain

χ(q, iν) =
1
U

(
1

1 − Uχ0(q, iν)/2
− 1

)
=

χ0(q, iν)
1 − Uχ0(q, iν)/2

, (G.40)

which corresponds to the RPA discussed in Chapter 1.
We note that the result obtained above in fact depends on the particular choice among those in

eq.(G.32). If we chose the second decomposition, we would have obtained the susceptibility where U
in eq.(G.40) replaced by U/3. It is evident that the lowest order expansion of the logarithm caused
the difference. In order to obtain the correct result to O(U) for χ(q, iν), one has to make expansion
of the logarithm up to O(φ4) which gives correct result for 〈|φ(q, iν)|2〉 to O(U2). The first factor
1/U in eq.(G.39) reduces the order of U by one, so that the lowest order expansion of the logarithm is
not sufficient to obtain the O(U) result for the susceptibility. Thus the RPA result obtained above is
fortuitous as the lowest order theory.

It is more convenient for numerical calculation such as the Monte Carlo simulation to use the Ising-
type discrete auxiliary field σ = ±1 instead of using the continuous one [16]. The identity we use now is
the following:

exp[A(Sz)2] =
1
2

∑
σ

exp(−BσSz), (G.41)

where B satisfies the relation exp(A/4) = cosh(B/2) with A,B > 0. This relation is easily confirmed by
applying both sides of eq.(G.41) to each eigenstate of Sz. We can solve for B as

B = 2 ln[exp(A/4) +
√

exp(A/2) − 1]. (G.42)

Thus the partition function is written, after introducing the Ising variable σi to each site and discretizing
τ , as

Z =
∏
i,j

∫
dηi(τj)∗dηi(τj)

∑
σi(τj)

exp[−δτ
∑

j

L(τj)], (G.43)

L(τj) = L0(τj) + I
∑

i

Sz
i (τj)σi(τj), (G.44)

where cosh(δτI/2) = exp(δτU/2) with δτ = τj−τj−1. Note that one has I ≫ U as δτ approaches 0. The
path integral over fermions can be done exactly as before. Thus one is left with the partition function of
a fictitious Ising model with interactions dependent on space and time difference. The summation over
Ising variables is conveniently dealt with by the Monte Carlo sampling.
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