動的平均場理論とその拡張

東北大学大学院理学研究科 倉本義夫 東北大学大学院工学研究科 清水幸弘

平成 16 年 5 月 19 日

概 要

動的平均場理論は,固体内電子の強い相関 効果を非摂動的に扱える強力な方法である。本 稿ではこの理論の簡明な解説を行なう。さら に短距離相関を考慮する拡張について,最近 の著しい発展を詳しく説明する。この拡張に より,モット絶縁体,擬ギャップ状態,d波超 伝導など多くの興味ある現象を理論的に扱え るようになった。これらのトピックの結果を 整理して紹介する。

§1 はじめに

多体相関は,超伝導や磁性など非常に多彩 で興味ある現象を引き起こすが,これらを最も 簡明に記述し,説明するのが平均場あるいは分 子場理論である。ただし, ハートリー・フォッ ク近似のような通常の分子場理論は,強い相 関がある場合にはすぐには適用できない。こ れを打破して平均場の延長で相関効果を理解 しようとする目論見がなされている。ちょうど 10年前の本誌で,筆者の一人は酒井治氏と共 に「無限次元の強相関電子系 ハバード・モ デルとその周辺 」と題して当時の状況をま とめた [1]。解説の対象は,今日しばしば動的 分子場理論と呼ばれるものと同一である。当 時は「無限次元」という現実離れした響きを 持って呼ばれていたが,近似理論としては,有 限次元の系に対しても有効である。現実の物 質との関連では、バンド理論との結合が進展 し,電子構造を相関効果を考慮して求める,と いう目標に向かっている。理論的枠組みに対 しても,この10年間にさまざまな拡張が試み られ,かなりの進展があった。この結果いく つかの変種も含めて,膨大な文献が蓄積され ている。本解説では,専門外の人でも新しい 全体像が展望できるように,ささやかな交通 整理を試みたい。またこの分野で新たに仕事 をしたい人のために,筆者の私見に基づいて, 将来に向けて有望な方向を強調して解説する。 新しい発展の流れは,

- (i) バンド理論との結合
- (ii) 短距離相関の考慮

の二つの方向に向かっているので,これを把 握できるように説明したい。

筆者が参考にした有益な総合報告として Georges[2] らのものと最近の Maier のもの [3] を挙げる。これらの解説は,文献を広範に紹 介していて全体像をつかむのに都合がよい。

§2 動的有効場とキャビティ

固体内電子の興味ある物性発現には,多数 の自由度が関与している。1つの電子に注目す ると,これらの相互作用を時間的・空間的に 揺らいでいる力として見ることができる。強 磁性の発現においては,各スピンに有効的な 磁場が働いているとみなす。

通常の平均場近似では,有効場は時間的に 変動しない。これは振動数成分では $\omega = 0$ の みを持つ,ということである。ここで有効場が 時間的に変動することを許すと,揺らぎの効 果が取り入れられるため,格段に詳細な情報 を盛り込むことができる。筆者の一人が,はじ めてこの理論を定式化したが [4,5],数年後に 同等の理論が行われ,Dynamical Mean-Field Theory (DMFT) すなわち動的平均場理論と いう名称で定着した [2]。本解説でもDMFTと いう呼び方を用いるが,短距離相関考慮へ拡 張する場合には,混乱を避けるためにクラス ター動的有効場理論と呼ぶことにする。

ワイスの分子場理論などで見られるように, もともとの平均場としては物理的実体である 磁場や電場が想定された。例えば誘電体にお いては,各電子は周りの電荷分布にしたがう 電場を感じて,自らの電荷分布を決める。そ の際,自分自身の電荷分布による媒質への反 作用も生ずる。平均場を決める際に,本来な らばこの反作用場を除くべきである。しかし, 通常の分子場理論では,注目しているサイト に働く力の源として自分自身が作り出した場 も含まれてしまっている。この結果,本来存在 しない相転移が出てきてしまうなど,種々の 不都合が生ずることがある。

自己場の排除は,誘電体では古くからの概 念, 例えばローレンツ場やクラウジウス-モソッ ティの関係式などに,ある程度反映されてい る。すなわち,注目する電気双極子を仮想的 に想定したキャビティの中におくことにより、 一様な媒質の分極に補正を加える。より洗練 された自己場排除の概念は,オンサガーの反 作用場として知られている[6]。スピン系の場 合には,自己場を除く拡張平均場理論は1960 年前後に構築されたが[7],量子スピン系への 拡張は1990年代まで遅れた[8]。後で説明する ように,動的平均場理論では,ある段階で注 目するサイトから電子間クーロン相互作用を 除いた状況を設定する。これが系に掘られた キャビティと同等の効果を果たし,自己場の 問題を解決している。

局所的な電子相関を,実空間から考慮しようとする努力は,1960年代にハバードによって先駆的かつ精力的になされた[9]。ハバード IIIと呼ばれる近似では,注目しているサイトの周囲がどちらのスピンによって占有されて いるか,という情報をベストの平均場によっ て考慮している。その際,周囲の電子が動か ないことを想定するので,占有するか否かの 情報は乱雑な静的ポテンシャルとして現れる。 これをそのまま平均すると, ハバード I と呼ば れる近似になるが,散乱補正と呼ばれる効果 を取り入れると, 平均場は動的な性格を得る。 すなわち,電子の持つエネルギーに依存する ようになる。ハバードの用いた近似は,後に コヒーレントポテンシャル近似 (CPA)と呼 ばれる手法と同等である [10]。 CPA は合金系 の乱雑ポテンシャルに対してベストの動的平 均場を決めるものである。電子相関の問題で は,周囲の電子も実際には運動する。ハバー ドは,この効果も部分的に取り入れ,共鳴散 乱補正と呼んだ。

CPAで現れる平均場は電子が感じるポテン シャルであり,自己エネルギー $\Sigma(z)$ であらわ される。ここで z は複素振動数である。CPAでは,乱雑系グリーン関数の平均と,自己エ ネルギー $\Sigma(z)$ を持つ仮想系グリーン関数が等 しくなるように $\Sigma(z)$ を決定する。ここで,平 均場 $\Sigma(z)$ はzに依存している。それゆえ動的 平均場の一種とみなされる。CPAでは, $\Sigma(z)$ を求める方程式は閉じている。これに対して, DMFT は多体問題を扱うので $\Sigma(z)$ を求める 問題は,一般にCPA条件だけでは決まらない。

§3 一様な動的平均場

§3.1 最適平均場と変分原理

DMFT の基本をハバードモデルを例にとっ て説明しよう。ハミルトニアンは,サイト表 示で

$$H = -\sum_{ij\sigma} t_{ij} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} c^{\dagger}_{i\uparrow} c_{i\uparrow} c^{\dagger}_{i\downarrow} c_{i\downarrow}$$

と書ける。バンドのエネルギー ϵ_k は, $-t_{ij}$ の フーリエ変換で与えられる。以下,断りのない ときには, t_{ij} は最隣接対でのみゼロでないも のとし,この値 tをエネルギーの単位にとる。 また,格子定数は1とする。この系の電子グ リーン関数を, 波数 k, 複素振動数を z として

$$G(\boldsymbol{k}, z) = [z - \epsilon_{\boldsymbol{k}} - \Sigma(z)]^{-1}$$

と書き,自己エネルギー $\Sigma(z)$ を導入する。自 己エネルギーは一般に波数 k に依存するが, DMFT ではこの依存性を無視する。すなわち, 動的平均場はサイトの位置によらず一様であ る。空間次元が無限大であれば,波数依存性は 厳密に消失する [11, 2]。DMFT では,グリー ン関数の実空間での対角要素 $\bar{G}(z)$ が重要な役 割を果たす。G(k, z) との関係は,全格子数を N として

$$\bar{G}(z) = \frac{1}{N} \sum_{k} \frac{1}{z - \epsilon_{k} - \Sigma(z)}$$
$$= \int_{-\infty}^{\infty} d\epsilon \frac{\rho(\epsilon)}{z - \Sigma(z) - \epsilon}$$
$$= g(z - \Sigma(z))$$
(1)

で与えられる。ここで g(z)は, U = 0の場合の局所グリーン関数である。バンドの状態密度 $\rho(\epsilon)$ が簡単な形をしていると, $g(z - \Sigma(z))$ は $z - \Sigma(z)$ の関数として解析的に求められる。

見方を変えて, $\bar{G}(z)$ を有効不純物問題の解 として求めることを考える。自己場を除くため に,注目サイトでのみクーロン相互作用Uが 欠損している状況を考え,これに対応したキャ ビティグリーン関数G(z)を導入する。他のサ イトとのホッピングの効果を動的な有効ポテ ンシャル $\lambda(z)$ で表すと,キャビティグリーン 関数は, $G(z) = [z - \lambda(z)]^{-1}$ と書ける。これ を $\lambda(z)$ の定義と考えてもよい。実際には,す べてのサイトにUが存在するから,この効果 を,注目サイトの自己エネルギー $\Sigma(z)$ で考慮 する。すると注目するサイトのグリーン関数 $\bar{G}(z)$ に対して,(1)の結果と合わせて二つの 表現

$$g(z - \Sigma(z)) = [z - \lambda(z) - \Sigma(z)]^{-1} \qquad (2)$$

が得られる。系は規則格子なので, $G(\mathbf{k}, z)$ の 自己エネルギーと $\bar{G}(z)$ のそれは等しいはずで ある。これが CPA と同等の最適化条件を $\Sigma(z)$ に与える [5]。 このようにして, 各 z に対して未知量 $\lambda(z)$ と $\Sigma(z)$ 間の自己無撞着関係 (2) が得られた。実際に有効1サイト問題を解くと, $\lambda(z)$ と $\Sigma(z)$ の間にもう1つの関係をつけることができる。これで初めて DMFT の方程式系が閉じ, $\lambda(z)$ と $\Sigma(z)$ の両方が求まる。すなわち, DMFT においては, 乱雑系の CPA 条件に相当するものだけでなく,局所多体問題を正確に解くプロセスが本質的である。このプロセスは,不純物ソルバーと呼ばれる。不純物ソルバーに複雑な多体効果の考慮を担わせる点が, DMFTの大きな特徴であり,以前のハバード III 近似や CPA から大きく前進した点である。

1980年代に DMFT と同等の理論が定式化 されたときには,アンダーソン格子が対象にさ れていた[4]。すでに不純物ソルバーは何でも よい,と自覚されていたが[5],数値計算には NCA と呼ばれる手法が用いられた [12]。それ ゆえこの理論は,筆者により extended NCA (XNCA)と呼ばれた。当時としては重い数値 計算が必要とされ,筆者の努力不足もあって あまり普及しなかった。XNCA の場合, $\lambda(z)$ に対応するハミルトニアンを陽に考える必要 はなかった。しかし, 1990年代に入って量子 モンテカルロ法(QMC)などを用いる手段も追 求され,媒質をあらわす具体的ハミルトニア ンが必要になった。Georges-Kotliar は媒質と して仮想的な不純物アンダーソン模型を提案 した [13]。すなわち,

$$\lambda(z) = \epsilon_f + \frac{1}{N} \sum_k \frac{|V_k|^2}{z - \epsilon_c(k)} \tag{3}$$

とすると,仮想的な局在準位 ϵ_f ,仮想的混成 相互作用 V_k ,および仮想的伝導帯スペクトル $\epsilon_c(k)$ を用いてハミルトニアンが定義できる。

巨視的な有効媒質を表すには,上の1次元 運動量 k を連続変数と見る必要がある。しか し,これを有限の自由度で近似すると,仮想的 アンダーソン模型を数値的厳密対角化の手法 で扱うことができる。低励起領域をもっとも精 度よく扱うのは,数値的繰り込み群を用いた 対角化である [1,14]。有限自由度の数を小さ くすると,自己無撞着方程式(2)を満たす解は 期待できない。したがって,別の考え方から最 適解を決める必要がある。Caffarel-Krauth は 誤差関数を適当に定義して,求められた $\Sigma(z)$ を持つ不純物系と周期系のグリーン関数の誤 差が最小になることを要請した[15]。これから 次のステップで用いる仮想的アンダーソン模 型のパラメータを決め,逐次近似で最終的な グリーン関数を求めている。この理論での誤 差関数は,変分原理から決めたわけではない。 最近では低振動数領域のフィットを重視した別 の形が提案されている[16]。

Caffarel-Krauth の手法を変分原理を用いて 体系化した理論が Potthoff によって定式化さ れた [17]。Potthoff の方法は DMFT をクラス ターに拡張する場合にも容易に適用できるの で,少し詳しく説明する。まず,有効アンダー ソン模型にはフェルミオンの一体状態を記述 するパラメータのセットが現れるが,これを 一般化されたホッピング t' と書くことにする。 さて,系の熱力学ポテンシャル Ω は多体摂動 論に従うと,温度 $T = \beta^{-1}$ で以下のように表 される [18]。

 $\beta \Omega\{G\} = \beta \Phi\{G\} - \operatorname{Tr}(\Sigma G) + \operatorname{Tr}\ln G \quad (4)$

ここで,基底に依存しない抽象的な表示を用 いており,グリーン関数Gは時空座標を足に 持つ行列である。 Φ{G} は, 骨格ファインマン ダイアグラムで構成される汎関数で $\delta \Phi / \delta G =$ ∑の関係を満たす。これを考慮するとダイソ ン方程式 $G^{-1} = q^{-1} - \Sigma$ を満足するときに $\delta\Omega{G}/\delta G = 0$ が得られる。この性質は変分 原理の一種であり,量子力学において波動関数 の変化に対して,正しい関数のところでエネ ルギーは停留値をとるべし、という性質に対応 している。近似理論においては, Φ{G} の具体 的近似から,とるべき自己エネルギーの形が決 まることになる。これは,保存則を満たす近似 理論を構築する際に有用な関係である[18]。さ て,汎関数の独立変数をGから自己エネルギー Σ に変えるために, $F{\Sigma} = \Phi - T \operatorname{Tr}(\Sigma G)$ を 導入すると, $\delta F/\delta \Sigma = G$ となり, 変分原理と して, $\delta\Omega\{\Sigma\}/\delta\Sigma=0$ が得られる。

以上の関係式は形式的に厳密であるが,実 際には Φ や*F*は近似的にしか求まらない。Potthoff のアイディアは, $\Sigma \in t'$ で特徴付けられ る代理の系で正確に求めることにある[17]。こ こで導入された近似は, Σを t' であらわせる 関数, すなわち $\Sigma_{t'}$ に限ることである。代理 系は元の系と同じ多体相互作用を持っている 点が本質的に重要である。 Φ を仮想的に摂動 展開して見るとわかるように,代理系と真の 系との違いはGのt'依存性を通じてのみ現れ る。したがって, 汎関数としての ⊕ における G依存性は,代理系と真の系で同じである。し かし, Fの Σ 依存性はt'への制限のため近似 的である。元の系の Ω から,代理系の熱力学 ポテンシャル $\Omega_{t'}$ を引き算すると, F は近似的 に相殺して

$$\Omega \sim \Omega_{\boldsymbol{t}'} + T \operatorname{Tr} \ln(g^{-1} - \Sigma_{\boldsymbol{t}'}) G_{\boldsymbol{t}'} \equiv \Omega\{\Sigma(\boldsymbol{t}')\}$$
(5)

を得る。ここで,gは無摂動グリーン関数, $G_{t'}$ は代理系で正確に求めたグリーン関数である。 右辺は実際に計算できる。ベストの代理系を 決める条件は

$$\partial \Omega \{ \Sigma(t') \} / \partial t' = 0 \tag{6}$$

となる。この近似方法を Potthoff は Self-Energy Functional Theroy (SFT) と呼んでい る。Caffarel-Krauth の誤差関数の最小化は, 多くのパラメータを含む代理系の場合に容易 に実行できる形であるが,(6)式の条件とは異 なっている。Potthoff は DMFT とほぼ同様の 結果を,非常に少ない自由度の代理系で再現 できることを示している[19]。

§3.2 現実的電子スペクトルの導出

DMFTをLDAに基づくバンド理論に組み 合わせて,電子相関効果を考慮する研究がな されている。その際,バンド計算法としては強 結合描像に関係のつけやすいLMTO法が用い られている。バンド計算で得られるスペクト ルを表すハミルトニアンは原子の種類と軌道 角運動量,磁気量子数で指定される要素を持 つ行列であり,波数ごとに *H*_{LDA}(*k*) と書かれ る。クーロン相互作用の長距離部分は LDA で 取り込まれているが,その他に短距離部分を 別個指定する。これを考慮した (1) 式のグリー ン関数は,

$$\bar{G}(z) = \frac{1}{N} \sum_{\boldsymbol{k}} \left[zI - \mathcal{H}_{\text{LDA}}(\boldsymbol{k}) - \Sigma(z)I_d \right]^{-1}$$
(7)

となる。ここで I は単位行列であり, I_d は f 軌 道や d 軌道のように強い電子相関のある軌道空 間での単位行列である。以下で LDA+DMFT を用いた計算結果を d 電子と f 電子について 紹介する。不純物ソルバーにはいずれも QMC を用いている。

少量のホールがドープされた $La_{1-x}Sr_xTiO_3$ は、常磁性金属であり、Tiの 3d 電子による相 関効果が物性に寄与すると考えられている。光 電子スペクトルが測定され、2つのピークが観 測された。LDA によるバンド計算から得られ る状態密度では、 t_{2g} 軌道のすそがフェルミ準 位にかかり、そこに1つのd 電子が詰まるの で、2 ピーク構造は説明できない。図1に示し たように LDA+DMFT の計算によって2 ピー ク構造を再現することができる [20]。2 ピーク

図 1: La_{1-x}Sr_xTiO₃の光電子分光と LDA, LDA+DMFT の計算結果の比較 [20]。

構造は,バンド構造あるいは近藤効果に由来

するピーク(コヒーレンスピークと呼ぶ)とと もに,強相関電子の局在的性格に由来するピー ク(下部ハバードバンドと呼ぶ)があることで 生じる。 $Sr_{1-x}Ca_xVO_3$ の光電子分光実験では, より明瞭なコヒーレンスピークが観測される が,この実験結果は,同様のLDA+DMFT計 算により定性的に説明される[21]。

 $Ce o \alpha - \gamma$ 転移は,大きな体積変化を伴う が,これに4f電子が重要な役割を果たしてい る,と考えられる。LDA+DMFTによって, α - γ 転移が微視的に研究されている [22, 23]。光 電子分光と逆光電子分光実験によれば、体積 の小さい α -Ceでは幅の広いコヒーレンスピー クが観測されている。一方,f電子の局在性が より強い *γ*-Ce においては明瞭なコヒーレンス ピークは観測されていない。この違いは,図2 に示すように, LDA+DMFT 計算によってほ ぼ再現できる。また,全エネルギーとエント ロピーの計算も行われた。それによると, α - γ 転移温度より高温では γ-Ceの体積に対応する ところに全エネルギーの極小点がある。転移 温度より低温では,より体積の小さい場所に 別の極小値が得られている。これが α -Ce に対 応する。エントロピーの効果も考慮して,両 者は1次転移で結ばれるというシナリオが-応支持された。ただし,QMCの誤差によるあ いまいさはかなり大きい。

LDA+DMFTでは,現実的電子構造を扱う とはいっても,様々な単純化がなされている。 まず短距離斥力 U を理論では決められず,手 で入れることがある。また,QMCの負符号問 題のために交換相互作用やスピン軌道相互作 用が考慮されていない。特に,軌道自由度の ある系やf電子系において実験と計算の定量的 比較を行うためには,これらを取り入れた計 算が必要である。最近,GW と呼ばれる近似 理論を併用して,U をバンド理論の枠組みで 決める試みもなされている[24]。

図 2: α-Ce と γ-Ce の PES, BIS と LDA+DMFT による計算結果の比較 [23]。

§3.3 DMFTの問題点

主にハバードモデルに対して, DMFT を用 いたモット転移の議論が盛んに行われた[2]。格 子あたり1個の電子を持つ場合, クーロン床 力Uが十分大きければ,系は絶縁体になると 期待される。一方, Uが十分に小さければ金 属状態が安定であろうから,途中に金属絶縁 体転移があるはず、というわけである。実際に は,ハバードモデルの金属絶縁体転移は空間 次元に敏感に依存する。たとえば,1次元では Uの大きさによらずに絶縁体が基底状態であ る。DMFT は無限次元でのみ正確さが保障さ れているので,この近似で得られる結論を有 限次元の系に当てはめるのは危険である。特 にモット絶縁体の記述においては,スピンエ ントロピーが基底状態まで残ってしまう,と いう深刻な欠点がある。これは DMFT が, サ イト間相関を平均場で置き換えてしまうこと に由来する。相転移はエネルギーとエントロ ピーの兼ね合いで決まるので,モット転移の 議論を DMFT で行うことの有効性を見出すの は難しい。

一方,基底状態が金属的であれば,サイト

間相関を無視する近似が深刻にはならない場 合がある。たとえば,DMFTはアンダーソン 格子の近藤効果など,局所的相関の強い金属 状態を記述するのが得意である[12]。しかしこ の場合でも,以下でふれるように,サイト間 相互作用で近藤効果が抑えられている事情を 反映できていない場合がある[25]。そこで,サ イト間相関を取り入れた動的有効場理論が必 要になる。

§4 波数に依存する動的平均場

§4.1 クラスターの座標と運動量

動的平均場を拡張する方法として,さまざ まなものが考えられている。この事情は乱雑系 のベストの平均場近似である CPA を拡張する 努力が下敷きになっている[10,26]。基本的に は,複数の格子点を含むクラスターを DMFT での単一サイトの代わりにとることである。こ こでは最も簡単な例としてハバード模型を用 いて,非局所相関を取り入れる理論の枠組みに ついて説明する。始めにクラスターに分割する ための座標を定義しよう。全サイト数が N個 の結晶を N/Nc 個に分割し, 各領域にはサイ ト数が N_c 個のクラスターが含まれるとする。 実空間におけるクラスターの原点座標を \tilde{r} で 表し, クラスター内での各サイトの座標を R で表す。すなわち各サイトの座標は $r = R + \tilde{r}$ で表される。 \tilde{r} と R に対応する逆格子空間で のラベルを,それぞれ \hat{k} とKとする。また, *k*が動きえる逆格子空間の領域をセルと呼ぶ。 図 3 に 2 次元正方格子で $N_c = 4 = L^2$ とした 場合を示した。

クラスターを媒質に埋め込む方法は, DMFTのようには一意的に決まらない。埋め 込み方に依存して,主な理論は以下で説明す るように分類される。読みにくい略語が出て くるが,一度訳語をつけた後は文献で一般的 に使われているものをそのまま用いることに する。

図 3: 実格子のクラスター(左図)と逆格子の セル(右図)。1stBZは,元の格子のブリルア ンゾーンを示す。

§4.2 クラスター摂動理論 (CPT)

クラスター間の自由度を分離するためにホ ッピング t_{ij} をクラスター内とクラスター間に 分離する。

$$t(\tilde{\boldsymbol{r}}_i - \tilde{\boldsymbol{r}}_j) = \delta_{\tilde{\boldsymbol{r}}_i, \tilde{\boldsymbol{r}}_j} t_c + t'(\tilde{\boldsymbol{r}}_i - \tilde{\boldsymbol{r}}_j)$$

 t_c, t' は、それぞれクラスター内とクラスター 間のホッピングを表し、クラスター内でのサ イト Rの集合についての N_c 次元の行列であ る。実空間における N_c 次元行列グリーン関数 $G(\tilde{r}_i - \tilde{r}_j, z)$ は

$$G(\tilde{\boldsymbol{r}}_i - \tilde{\boldsymbol{r}}_j, z)^{-1} = \delta_{\tilde{\boldsymbol{r}}_i, \tilde{\boldsymbol{r}}_j} \bar{G}(z)^{-1} - t'(\tilde{\boldsymbol{r}}_i - \tilde{\boldsymbol{r}}_j)$$

を満たす。ここで $\bar{G}(z)$ は1つのクラスターの みを考えた場合の N_c 次元行列グリーン関数で あり,

$$\bar{G}(z) = [z - t_c - \Sigma_c(z)]^{-1}$$
 (8)

と表せる。 $G(\tilde{r}_i - \tilde{r}_j, z)$ の $\tilde{r}_i - \tilde{r}_j$ に関するフーリエ変換を行うと

$$G(\tilde{k}, z)^{-1} = \bar{G}^{-1}(z) - t'(\tilde{k})$$
(9)

を得る。これが CPT である [27, 28]。ここで R に関しては,まだフーリエ変換を行ってい ないことに注意する。したがって,クラスター に対応した小さいブリルアンゾーンの波数 \tilde{k} を持つグリーン関数行列 $G_{ij}(\tilde{k}, z)$ から,元の 大きいブリルアンゾーンに対応したグリーン 関数 G(k, z) を構成する必要がある。その際, 元の格子の周期性が近似によって失われてし まったので,一般的には k に関して非対角要 素が残るはずである。CPT ではこれを無視し て対角成分のみを

$$G(\boldsymbol{k}, z) = \frac{1}{N_c} \sum_{i,j=1}^{N_c} G_{ij}(\tilde{\boldsymbol{k}}, z)$$
$$\times \exp[-i\boldsymbol{k} \cdot (\tilde{\boldsymbol{r}}_i - \tilde{\boldsymbol{r}}_j)]$$
(10)

によって求める。ここで, $k = ilde{k} + K$ となる ようにKを選ぶ。

この導出から明らかなように, CPTではク ラスター内の電子間相互作用は(8)式の $\Sigma_c(z)$ によって考慮されているが,異なるクラスター にまたがる自己エネルギーへの寄与は落とさ れている。また CPT は媒質への埋め込みにつ いて最適化をしていない。一方,自己エネル ギーがクラスター内のプロセスで決まってい るので,これを正確に扱えば,因果律の要請 すなわち," $\Sigma(z)$ の虚部は上半面のzに対し ては負であるべし",という性質を満たしてい る。全体のグリーン関数 $G(\mathbf{k}, z)$ も因果律,つ まり上半平面での解析性を満足する。以下に 述べる DCA, CDMFT, SFTにおいても,ク ラスター不純物問題を正しく解けば,全体の グリーン関数の解析性を自動的に満足する。

§4.3 動的クラスター理論 (DCA)

クラスター内のホッピングに起因する t_cは, 逆格子空間ではバンド分散のセル内での平均値

$$\bar{\varepsilon}_{\boldsymbol{K}} = (N_c/N) \sum_{\tilde{\boldsymbol{k}}} \varepsilon_{\boldsymbol{K}+\tilde{\boldsymbol{k}}}$$
(11)

となる。これに対応して逆格子空間の各セル を独立とした場合のグリーン関数は

$$\bar{G}(\boldsymbol{K}, z) = [z - \bar{\varepsilon}_{\boldsymbol{K}} - \Sigma(\boldsymbol{K}, z)]^{-1} \qquad (12)$$

である。一方, クラスター間のホッピングに起 因する t'は, 格子のバンド分散と \bar{e}_K との差

$$t'(\boldsymbol{K} + \boldsymbol{k}) = \epsilon_{\boldsymbol{K} + \tilde{\boldsymbol{k}}} - \bar{\varepsilon}_{\boldsymbol{K}}$$
(13)

となるので,全体系のグリーン関数は

$$G(\boldsymbol{K} + \tilde{\boldsymbol{k}}, z) = \left[\bar{G}^{-1}(\boldsymbol{K}, z) - t'(\boldsymbol{K} + \tilde{\boldsymbol{k}})\right]^{-1} \quad (14)$$

と与えられる。これが DCA である [29]。この 近似では,自己エネルギーの波数依存性はセ ル中では無視されている。したがって,グリー ン関数の波数依存性は,クラスター間のホッピ ングだけに由来する。

セル内での $G(\mathbf{K}+\tilde{\mathbf{k}},z)$ の平均値を

$$\bar{G}(\boldsymbol{K}, z) = (N_c/N) \sum_{\tilde{\boldsymbol{k}}} G(\boldsymbol{K} + \tilde{\boldsymbol{k}}, z) \quad (15)$$

と定義する。自己無撞着解を得ることは,

$$\bar{G}(\boldsymbol{K}, z)^{-1} = \mathcal{G}(\boldsymbol{K}, z)^{-1} - \Sigma(\boldsymbol{K}, z) \quad (16)$$

を満たすキャビティのグリーン関数 $\mathcal{G}(\mathbf{K}, z)$ を 決定する問題と等価である。解を得るための 数値計算手順として,以下のような逐次近似 が用いられる。

- (i) キャビティグリーン関数 G(K, z) の第0近
 似を適当にとる。
- (ii) クラスターを不純物とみなす問題を解い て,繰り込まれたグリーン関数 $G_c(K,z)$ を求める。これは $\bar{G}(K,z)$ と等しくなる べきものである。
- (iii) $\Sigma(\mathbf{K}, z) = \mathcal{G}(\mathbf{K}, z)^{-1} G_c(\mathbf{K}, z)^{-1}$
- (iv) 上の $\Sigma(\mathbf{K}, z)$ を $G(\mathbf{K} + \tilde{\mathbf{k}}, z)$ に用いて $\bar{G}(\mathbf{K}, z) = (N_c/N) \sum_{\tilde{\mathbf{k}}} G(\mathbf{K} + \tilde{\mathbf{k}}, z)$ を 計算。
- (v) $\mathcal{G}(\mathbf{K}, z)^{-1} = \overline{G}(\mathbf{K}, z)^{-1} + \Sigma(\mathbf{K}, z)$ でキャ ビティグリーン関数を再計算。
- (vi) 上記の G(K,z) を第1近似として,再び(ii)の問題に用いる。以下 G(K,z)とG_c(K,z)が等しくなるまで(ii)から(v)の計算を繰り返す。

上記のループで,計算負荷が最も大きいス テップは(ii)である。*N*c個の波数 K のそれぞ れについて,クラスター不純物アンダーソン 模型を解く必要がある。実際的な計算時間で信 頼できる結果の得られる手法を用いることが 肝要であり、通常 NCA か QMC が用いられて いる。DCA で $N_c = 1$ とすると従来の DMFT による計算に帰着される。すなわち DMFT に よる計算結果と DCA によるそれを比較するこ とによって非局所相関効果の物理量への寄与 を見積もることができる。 N_c を増加させると 自己エネルギーの波数依存性を細かく取り入 れることができる。

§4.4 セル型動的分子場理論 (CDMFT)

CDMFTにおいてはクラスター内の自由度 を実空間で取り扱う。クラスターと媒質との相 互作用は、CPAの拡張であるMolecular CPA (MCPA)と同様に扱う[26]。すなわち、DMFT における(1)式に現れるグリーン関数をすべて $N_c \times N_c$ の行列とみなす。行列の基底はクラス ター内のサイトとしてもよいが、より一般的 には独立な軌道であれば何でもよい。また(1) 式の波数kは、クラスターに対応した波数 \tilde{k} に置き換える。CDMFTは、CPTにおけるク ラスター自己エネルギーを、クラスター相互 作用を考慮して最適化する枠組み、といえる。 具体的には(8)式の代わりに媒質を考慮した 行列グリーン関数の最適化条件

$$\bar{G}(z) = (N_c/N) \sum_{\tilde{k}} G(\tilde{k}, z) \qquad (17)$$

を要求する [30]。これを逆格子空間で対角化された (15) 式と比較すると, DCA との対応が明らかになる。行列 $G(\tilde{k}, z)$ からもとの波数を持つグリーン関数を得る方法は, (10) 式と同じである。CDMFT のクラスターと媒質への埋め込みは図 4 に CDMFT として,模式的に示されている。

§4.5 自己エネルギー汎関数法 (SFT)

Potthoff の変分原理は,クラスターパラ メータの最適化と媒質への埋め込みを最適化

図 4: クラスター動的有効場理論におけるクラ スターのとり方。SFT における小さい白丸は 媒質の代理となるサイト, CDMFT における 丸は無限媒質を表す。

するために有益である。いくつかの近似理論 は、SFT にあらわれるクラスターのサイズ N_c と媒質を代理するサイトの数 N_b の特別の組 み合わせとみなせる [17]。例えば、DMFT は $N_c = 1, N_b = \infty$ の SFT であるし、 N_b を有限 にすると Caffarel-Krauth の厳密対角化とほぼ 同一である。さらに CDMFT は $N_c > 1, N_b = \infty$ に相当する。しかし、SFT が最も特徴を出 すのは、うまい最適化を有限自由度の系で行 うときである。こうすると、簡単な計算で熱 力学量については大掛かりな数値計算とほぼ 一致する結果を出せる。図4には SFT のクラ スターと媒質への埋め込みが模式的に示され ている。

§5 ハバード模型への適用

§5.1 モット転移と電荷ギャップ

まず,サイトあたり1個の電子があるハバー ド模型を考える。1次元ではモット転移が起き ないことがわかっているが,2次元ではどうだ ろうか?DFMTでは,U/tの増加につれてモッ ト転移が生ずるが,絶縁体状態の記述に問題 があるので結果は信用できない。2サイト以上 のクラスターを取る拡張では,最隣接対の反 強磁性相関が取り入れられる。図5に計算結 果の例を示す[31]。クラスター有効場理論に DCA,クラスター不純物ソルバーにはQMC を用いている。これを以後DCA+QMCとあ らわす。クラスターのサイズを大きくすると, *U/t*の小さい領域ですでにモットギャップがあ いていることがわかる。

図 5: ハーフフィリングn = 1,相互作用U/t = 4における 2次元ハバードモデルの状態密度 (DCA+QMC)。DMFT($N_c = 1$)では,フェ ルミ順位でピークが存在するが, N_c を大きく すると,フェルミ順位($\omega = 0$)に明瞭なギャッ プが開くことがわかる[31]。

一方,次近接ホッピング t' を入れると,反 強磁性相関にフラストレーションが生ずる。こ の場合には,小さい U では金属状態が安定化 し,U/t の増加とともにモット転移が生ずるこ とが報告されている [32, 33, 34]。

図 6 は, CDMFT の連続媒質を SFT を用 いて有限自由度で代理し,1次元ハバードモデ ルの電子密度を化学ポテンシャル μ の関数と して導出したものである [16]。ハーフフィリン グではモット絶縁体が基底状態になっている が,これに伴って μ の有限の区間にわたって n = 1 になる。これが電荷ギャップに対応する。 $N_c = 2, N_b = 8$ としてクラスターを最適化す ると, $n(\mu)$ のカスプ構造を含めて,ほぼ厳密解 の結果を再現することがわかる。DMFT では もちろんこのように正確な結果は得られない。

§5.2 ドーピングと擬ギャップ

擬ギャップは,はじめ高温超伝導体のNMR で報告され[35],帯磁率,電気伝導,光電子 分光などの物理量でも次々に観測された。こ

図 6: U/t = 4 における 1 次元ハバードモデ ルの電子密度 n と化学ポテンシャル μ の関係。 $N_c = 2, N_b = 8$ を用いている [16]。BA はベー テ仮説による厳密解, PCDMFT は格子の周期 性を忠実に取り入れるように CDMFT を変形 したものである。

の原因については,

- (i) クーパー対形成の揺らぎ
- (ii) 反強磁性の揺らぎ
- (iii) 多体相関による散乱の増大

などが議論されている [36]。DCA+QMC によ る計算結果を図7に示す[37]。ハーフフィリン グから少し外れた密度で,確かに状態密度のく ぼみがフェルミ準位付近に生じていることが わかる。すなわち $\delta = 0.050$ では,フェルミ準 位付近に擬ギャップがあるが, $\delta = 0.200$ では 消失している。これに対応して,低ドープ領域 では,帯磁率が低温で急速に減少する。Jarrel らは,擬ギャップの現れる領域が,超伝導転移 や反強磁性転移の臨界点近傍ではないことか ら,(i),(ii)の揺らぎ機構を排除している。む しろ, 共鳴価電子結合 (RVB) に近い以下の描 像が妥当である。すなわち,ホールの周囲が みな反強磁性相関のあるスピンであれば,こ の反強磁性ボンドを切断して移動する必要が ある。これに必要なエネルギーは $J \sim 4t^2/U$ である。したがって,擬ギャップはおおよそJ でスケールされる [3, 38]。

図 7: ホールをサイトあたり δ 個ドープした U/t = 8 における 2 次元ハバードモデルの状 態密度と帯磁率の温度依存性 (DCA+QMC, $N_c = 4)[37]$ 。

CPTを用いて,より大きいクラスターでの 1電子スペクトル関数が求められた[34]。これ は角度分解光電子スペクトルと対応する。ハー フフィリングから電子を減らす場合と増やす 場合で,スペクトルの様相はかなり異なる。パ ラメータを適当に選ぶと,銅酸化物の実験と 対応する強度分布が得られた。

§5.3 反強磁性

正方格子ハバードモデルの基底状態は, ハーフフィリングにおいては,1次元ではス ピン液体,2次元以上では反強磁性秩序状態で ある。ただし,有限温度では2次元の反強磁 性秩序は存在しない。したがって,これらの 厳密な性質を再現できるかどうかが近似理論 のひとつのテストになる。通常の分子場理論 では次元による違いは記述できない。DMFT でも同様である。DCA+QMCでは, N_c の増 加とともに転移温度 T_N が減少する。しかし, $N_c = 40$ としても $N_c = 1$ の値の7割程度に しか下がらない[39]。したがって,転移温度を ゼロに下げるのは非常に困難であることがわ かる。

一方,T = 0における磁気秩序の次元依存性

については,より妥当な結果が得られている。 すなわち,CPT のクラスター計算とPotthoff の変分理論を組み合わせると,反強磁性分子 場hを最適化することができる。この結果は, 1次元においてh = 0,2次元において $h \neq 0$ という結果が得られる[40]。1次元のハバー ド鎖をならべたラダーでは,h = 0のはずで あるが,計算では有限の値が出てしまう。し かし,この有限値はラダーを長くしていくと 急速に0に近づいていく。

§5.4 超伝導

同一サイトの電子間斥力が強い場合には, クーパー対の波動関数は原点で0になるのが 有利である。したがって, s 波よりも p 波や d 波の対称性が好まれる。しかし, DMFT では 周囲をならしてしまうので,s波以外の対称性 を扱うことはできない。d波を扱うには最低 4 サイトのクラスターを考慮する必要がある。 反強磁性と同様に,2次元のハバードモデル では,超伝導の転移温度も厳密には0になる はずである。クラスター平均場理論ではこれ が有限に出るが,現実の準2次元物質の状況 を理解するのには便利な結果となる。図8は, $N_c = 4 \text{ O DCA} + QMC を用いて,正方格子八$ バードモデルの各種感受率を計算し,その発 散から転移温度を決めて求めた相図である[3]。 擬ギャップの領域は帯磁率の極大を与える温度 で決めている。d波の超伝導と反強磁性が銅酸 化物系の相図と対応する形で得られている。

§6 周期アンダーソン模型への適用

周期アンダーソン模型は,重い電子系の電 子状態を記述するために適した模型である。す なわち電子相関を考慮した局在性の強い1本 のfバンドと電子相関を考慮しない1本の伝導 電子バンドが混成する模型である。この模型 を動的平均場理論で取り扱うと,もとの局在

図 8: 超伝導と磁性を含む2次元ハバードモデ ルの相図 [3]。 *U*/*t* = 8 の場合を示す。

準位が深い場合にも、フェルミ準位近傍に状 態密度のピークが現れる。ボゾン化法による 平均場近似でも同様の結果が得られる。それ が重い電子状態を記述する[41]。このピークの 起源は,不純物アンダーソン模型の近藤ピー クと同じであり,局所相関に由来している。以 後これをコヒーレンスピークと呼ぶ。一方,f 電子間の非局所相関は伝導電子との混成を媒 介とする RKKY 相互作用によって記述される と考えられている。局所相関と非局所相関の 双方を同時に1つの理論の枠組みで取り扱う 研究は,2不純物模型においてはなされている が,格子模型における理解はまだ十分ではな い。波数に依存する動的平均場理論による研 究が局所相関と非局所相関の競合についての 理解を深めると期待される。そこで,2次元正 方格子の周期アンダーソン模型に DCA+NCA を適用し,局所相関効果と非局所相関効果の 競合を調べた著者の一人の研究について紹介 する [25]。

ハーフフィリングの周期アンダーソン模型 に、DMFTを適用すると、大きく温度変化をす るコヒーレンスピークが現れる。ここで、フェ ルミ準位に混成ギャップが開かないように、パ ラメータを選んでおく。 $N_c = 4$ のDCA計算 を行うと、DMFTとは対照的にフェルミ面付 近のコヒーレンスピークは現れず、代わりに 擬ギャップが出てくる。この原因は、反強磁性 のRKKY相互作用が局所相関より強いことに ある。すなわち,隣り合う局在電子に反強磁 性相関があると,近藤効果に関連する伝導電 子との反強磁性相関は抑えられる。

最隣接 RKKY 相互作用の符号(反強磁性 であるか強磁性であるか)とその大きさは,伝 導電子のフィリングに依存して変化する。局 在電子の占有数をサイトあたり1程度にした まま伝導電子の占有数を 0.4 程度とした場合 に,波数分解した状態密度を図9に示す。エ ネルギーの単位として,最隣接ホッピングを とり,局在電子準位 ϵ_f など他のパラメータは, $\epsilon_f = -2, U = 4, V = 1$ とした。ここでVは混 成の強さを表す。K = (0,0), すなわち Γ 点近

図 9: DCA+NCA により計算した周期アン ダーソン模型の状態密度 [25]。 上図が高温 (T = 0.2)で下図が低温(T = 0.02)の結果。

くの波数において温度変化するコヒーレンス ピークが存在することがわかる。このコヒー レンスピークの温度変化は,DMFTの結果と 同様である。一方, $K = (\pi, \pi)$ の波数近くに おいては擬ギャップの振る舞いが見える。伝導 電子のフィリングを減少させると,反強磁性 RKKY相互作用の大きさが減少し,局所相関 が支配的となった,と解釈する。これにより, 上記の状態密度の振る舞いを説明することが できる。

§7 まとめと展望

DMFTをクラスターへ拡張したクラスター 動的有効場理論は,不純物ソルバーと媒質へ の埋め込み方によって複数の組み合わせがで きる。表1は,代表的なクラスター不純物ソ ルバーを比較して,その利点と欠点をまとめ たものである。一方,表2は,媒質への埋め込 み方に関して,現在行われている方法を比較 した。今のところ万能な手法はないので,解 きたい問題に応じて有効な手法を使い分ける のが効率的である。

本解説では,局在電子の内部自由度をスピ ンだけに限ったが,軌道自由度,スピン・軌道 分裂のある準位構造などに起因する現象にも, 興味ある問題がたくさんある。またスピネル やパイロクロアなど,短距離相関が幾何学的 な配置でフラストレートした系特有の強相関 現象がある。これらは,短距離相関を正確に 考慮しないと理解できない。クラスター動的 有効場理論は,上に例示した強相関電子系の さまざまな問題に,今後より広範に応用され る使いやすさと柔軟性を備えている。

参考文献

- [1] 倉本義夫,酒井治: 固体物理 29 (1994) 777.
- [2] A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg: Rev. Mod. Phys. 68 (1996) 13.
- [3] T. Maier et al: cond-mat/0404055.
- [4] Y. Kuramoto: Theory of Heavy Fermions and Valence Fluctuations,

eds. T. Kasuya and T. Saso (Springer Verlag, 1985) p.152.

- [5] Y. Kuramoto and T. Watanabe: Physica 148B (1987) 80.
- [6] L. Onsager: J. Am. Chem. Soc. 58 (1936) 1486.
- [7] R. Brout: Phys. Rev. **122** (1960) 469.
- [8] Y. Kuramoto and N. Fukushima: J. Phys. Soc. Jpn. 67 (1998) 583.
- [9] J. Hubbard: Proc. Royal. Soc. London 276 (1963) 238.
- [10] R.J. Elliott, J.A. Krumhansl and P.A. Leath: Rev. Mod. Phys. 46 (1974) 465.
- [11] E. Müller-Hartmann: Z. Phys. B74 (1989) 507.
- [12] C.-I. Kim, Y. Kuramoto and T. Kasuya:J. Phys. Soc. Jpn. 59 (1990) 2414.
- [13] A. Georges and G. Kotliar: Phys. Rev. B 45 (1992) 6479.
- [14] O. Sakai and Y. Kuramoto: Solid State Commun. 89 (1994) 307.
- [15] M. Caffarel and W. Krauth: Phys. Rev. Lett. 72 (1994) 1545.
- [16] M. Capone et al.: $\operatorname{cond-mat}/0401060$.
- [17] M. Potthoff, M. Aichhorn and C. Dahnken: Phys. Rev. Lett. 91 (2003) 206402.
- [18] G. Baym: Phys. Rev. **127** (1962) 835.
- [19] M. Potthoff: Eur. Phys. J. B36 (2003) 335.
- [20] I. A. Nekrasov et al: Euro. Phys. J. B. 18 (2000) 55.

- [21] S.-K. Mo et al.: Phys. Rev. Lett. 90 (2003) 186403.
- [22] M. B. Zölfl et al.: Phys. Rev. Lett. 87 (2001) 276403.
- [23] A. K. McMahan, K. Held and R. T. Scalettar: Phys. Rev. B 67 (2003) 75108.
- [24] S. Biermann, F. Aryasetiawan and A. Georges: cond-mat/0401653.
- [25] Y. Shimizu: J. Phys. Soc. Jpn. 71 (2002) 1166.
- [26] M. Tsukada: J. Phys. Soc. Jpn. 26 (1969) 684.
- [27] C. Gros and R. Valenti: Annalen der Phys. 3 (1994) 460.
- [28] D. Sénéchal, D. Perez and M. Pioro-Ladriére: Phys. Rev. Lett. 84 (2000) 522.
- [29] M.H. Hettler et al.: Phys. Rev. B58 (1998) R7475.
- [30] G. Kotliar et al.: Phys. Rev. Lett. 87 (2001) 186401.
- [31] S. Moukouri and M. Jarrell: Phys. Rev. Lett. 87 (2001) 167010.
- [32] Y. Imai and N. Kawakami: Phys. Rev. B65 (2002) 233103.
- [33] O. Parcollet, G. Biroli and G. Kotliar: cond-mat/0308577.
- [34] D. Sénéchal and A.-M. Tremblay: condmat/0308625.
- [35] H. Yasuoka, T. Imai, T. Shimizu: Strong Correlation and Superconductivity, (Springer Verlag, Berlin, 1989) p. 254.

- [36] Y. Yanase et al.: Phys. Rep. 387 (2003)1.
- [37] M. Jarrell et al.: Europhys. Lett. 56 (2001) 563.
- [38] T.D. Stanescu and P. Phillips: Phys. Rev. Lett. **91** (2003) 017002.
- [39] M. Jarrell et al.: Phys. Rev. B64 (2001) 195130.
- $[40]\,$ C. Dahnken et al.: cond-mat/0309407.
- [41] Y. Kuramoto and Y. Kitaoka: *Dynamics* of *Heavy Electrons*, (Oxford 2000).

表 1: クラスター不純物ソルバーの比較

手法	長所	短所
NCA	広範囲の温度を取り扱える。多	フェルミ液体の基底状態を再現
	重項構造や軌道自由度のある系	不能。計算量は、クラスターサ
	も容易に扱える。	イズに指数関数的に依存。
量子モンテカルロ (QMC)	弱相関から強相関まで計算可能。	負符号問題が起こると,低温の
	大きいクラスターでも実行可能。	計算は困難。動力学量の計算は,
		解析接続で精度が落ちる。
数値的繰り込み群	弱相関から強相関まで計算可能。	クラスターの自由度が増えると,
	低温・低励起領域を正確に取り	計算量は膨大。動力学には離散
	扱える。	量の平滑化が必要。
数值的厳密対角化	固有状態が得られる。絶対零度	代理系パラメータに曖昧さが残
	の静的物理量を容易かつ精度よ	る。連続スペクトルを離散スペ
	く求められる。	クトルで代用。

表 2: クラスター動的有効場理論の比較

手法	長所	短所
CPT	有効場の最適化をしないので , 大きなク	小さいクラスターでは精度がわるい。格
	ラスターを扱える。	子の周期性を破っている。
CDMFT	局所的物理量の収束が早い。基底関数の	ー様な物理量の収束が DCA より遅い。格
	取り方に柔軟性あり。	子の周期性を破っている。
DCA	格子の周期性を破らない。一様物理量の	グリーン関数の波数依存性が不連続。局
	収束が早い。	所的物理量の収束が CDMFT より遅い。
SFT	クラスターと媒質を効率よく選べる。大	連続スペクトルを離散スペクトルで代用。
	きなクラスターで秩序状態を扱える。	代理系と元の系の対応に曖昧さが残る。