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The stability and other properties of a staggered flux (SF) state or a correlatedsity wave state are studied
for the Hubbard ttt’-U) model on extended square lattices, as a low-lying state that competes willp thevave
superconductivityd-SC) and possibly causes the pseudogap phenomena in underdopdd higirates and organic
x-BEDT-TTF salts. In calculations, a variational Monte Carlo method is used. In the trial wave function, a configuration-
dependent phase factor, which is vital to treat a current-carrying state for al#rdge introduced in addition to ordinary
correlation factors. Varyin@J/t, t'/t, and the doping rateS) systematically, we show that the SF state becomes more
stable than the normal state (projected Fermi sea) for a strongly correldted>(5) and underdopeds (< 0.16)
area. The decrease in energy is sizable, particularly in the area where Mott physics prevails and the circular current
(order parameter) is strongly suppressed. These features are consistent with thosé fomtbdel. The &ect of the
frustrationt’/t plays a crucial role in preserving charge homogeneity and appropriately describing the behavior of hole-
and electron-doped cuprates anBEDT-TTF salts. We argue that the SF state does not coexistda®8 and is not a
‘normal state’ from whichd-SC arises. We also show that a spin current (flux or nematic) state is never stabilized in the
same regime.

1. Introduction staggered flux (SF) state (sometimes calledensity wave
Superconductivity (SC) in underdoped high-cuprates State)—as a possible pseudogap state for the Hubbard model.
should be understood through the relationship to the pseudd/® should understand such a state in the context of a doped
gap phase observed fdg < T < T*, whereT, [T*] is the Mott insulator®# To respect the strong correlation, we use a
superconducting (SC) transition [pseudogap] temperatéire. Variational Monte Carlo (VMC) methott) which deals with
half filling, it is probably related to Mott insulatcid) (pre- tent results for many aspects of cuprates?If the pseudo-
cisely, charge-transfer insulat8s Experimentally, the pseu- 9ap phenomena are generated by a symmetry-breaking state,
dogap phase presents various features distinct from an ortjishould be more stable than the (symmetry-preserved) or-
nary Fermi liquid® (1) A large gap derent from thet_2- dinary normal state. Also, when a predominant antiferro-
wave SC ¢-SC) gap opens in the spin degree of freedom ne&f2gnetic (AF) ord-SC state is suppressed for some reason,
the momenta ofz, 0) and (Ox). (2) However, the material is features of the symmetry-breaking state will manifest them-

conductive and does not have a charge gap. (3) Fragment@ffves. Note that a recent VMC calculation with a band-
Fermi surfaces, i.e., Fermi afe8 or hole pocket§;® appear renormalization fect showed that an AF state is consider-

in the zone-diagonal direction near/@, 7/2). ably stabilized compared with tlieSC state in a wide region

The origin of the pseudogap has often been studied asPhthe Hubbard mode¥)
linkage tod-SC, although it will not be related to SC fluc- Since the early years of research on cuprate SCs, the SF
tuation10-15 On the other hand, recent experimental studState has been studied by many groups from both weak- and
ies argued that the pseudogap phase is accompanied Sfpng-correlation sides. In the early studigg® the main
some symmetry-breaking phase transition$'a® (1) Time- alm was to check whether the SF state becomes the ground
reversal symmetry breakit®rl® is claimed from polarized state, but ?t was shown mainly using thd model that the
neutron scattering signals at the momentun®jGs well as SF state yields to other ordered states (AF &&(C) for any
from the appearance of the Kerffect. (2) Rotational sym- relevant parameters. Later, the SF state was mainly studied
metry breaking (or nematic order) similar to the stripe phas@s @ candidate for a normal state that causes the pseudogap
is observed, and the oxygen sites between copper atoms Bfg¢nomena and underligsSC in underdoped cup_raté%?o)
involved?29 (3) Charge orders or charge density waves are At half filling, for the Heisenberg model, owing to the
observed in resonant X-ray scattering experiméhi®) (4) SU(2) symmetry, the SF state is equivalent todheave BCS
(, n)-folded (shadow) bands appear in ARPES spectra, aftfite?">? which has a very low enerdy*? comparable to
so forth?#-2" Note, however, that the thermodynamic properthat of the AF ground stafé*% The t-J model with finite
ties such as specific heat and spin susceptibility have not piéePing was studied using U(1) and SU(2) slave-boson mean-
vided any evidence of the phase transition. It is also importafigld theorie§®=® and a perturbation theory of Hubbak

to study whether a pseudogap and other orders coexist or §ierators?) which revealed that the SF phase exists in phase
mutually exclusive:>-28-30) diagrams but is restricted to very small doping regighas a

In this context, we study a symmetry-breaking state—&0re reliable treatment, VMC calculaticis'®**¥showed
that the SF state has lower energy than the projected Fermi
sea, although thd-SC state has even lower energy. It was
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pointed out that thé dependence of the SC condensation eraxation time (¥T,T) in the metallic phasel( > T). On the
ergy using the SF state as a normal state becomes dofffelikether handg-(ET),Cu,(CN)s, which has a spin liquid state in
but that the SF state tends to be unstable toward phase sepéra-insulating phase under ambient pressure, exhibits the Ko-
tion.8Y) These VMC results claim that the strongly correlatedringa relation (1T, T = const.) in the metallic phase under
Hubbard model should have the same features. pressure, namely, pseudogap behavior is aliSefurther-

For the Hubbard model, SF states have been studied usimgre, similar pseudogap behavior was observed in a hole-
a phenomenological theof§), mean-field theorie$*%% and doped«-ET salt k-(ET)sHgzs9Brg],”® in which the doping
more refined renormalization group meth®e&) from the rate is 011 andt’/t ~ 0.8. With these experimental results in
weak-correlation side. These studies obtained various knowhind, we study the SF state on an anisotropic triangular lat-
edge of the SF state, but it is still unclear whether or not thigce in the framework applied to the frustrated square lattice
SF state is stabilized in the weakly as well as strongly corrder cuprates.
lated regions. On the other hand, a Gutzwiller approximation This paper is organized as follows. In Sect. 2, we introduce
study?® claimed that the SF state is not realized in the Hubthe model and method used in this paper. In Sects. 3 and 4, we
bard model. A study using a Hubbard operator appréfach discuss the results mainly for the simple square lattice ()
showed the absence of SF order for a laky¢ (= 8) un- at half filling and in doped cases, respectively, to grasp the
less an attractive intersite interaction is introduced. A studgommon properties of the SF state. Section 5 is assigned to the
using a dynamical cluster approximation for ax2 clus- effect of the diagonal hopping terthfor the frustrated square
ter®® argued that the circular-current susceptibility increasdattice and anisotropic triangular lattice. In Sect. 6, we discuss
in the pseudogap-temperature regime but does not diverdlee results. In Sect. 7, we recapitulate this work. In Appendix
and there is no qualitative changeld# andt’/t are varied. A, we summarize the fundamental features of the noninteract-
A study using a variational cluster appro&8ttoncluded that ing SF state. In Appendix B, we briefly review the stability of
the SF phase is not stabilized with respect to the ordinary ndhe SF phase farJ-type models with new accurate data. In
mal state for a strongly correlated regidd/¢ > 4). An ex- Appendix C, we show that the spin current (flux) state is un-
tended dynamical-mean-field approximation showed that atable toward the projected Fermi sea-ig+type models for
though the SF susceptibility is enhanced, it is dominated lnyJ (> 0) ands. Preliminary results on thdiect oft’ terms
d-SC and an inhomogeneous phasetfgt = 0.”Y Thus, it have been reported in two preceding publicati#fh®?
is still unclear whether the results in the Hubbard model are
consistent with those in thed model. ]

The purpose of this paper is to show that the SF state bg- Model and Wave Functions
comes considerably stable with respect to the projected Fermiln Sects. 2.1 and 2.2, we explain the model and variational
sea (an ordinary normal state) in the underdoped regime faave functions used in this paper, respectively. In Sect. 2.3,
large values ofJ/t andt’/t ~ —0.3 in the Hubbardt{t’-U) we introduce a phase factor essential for treating a current-
model, and to clarify various properties of this state on thearrying state in a strongly correlated regime. In Sect. 2.4, we
basis of systematic VMC calculations. It is essential to introdescribe the numerical settings of our VMC calculations.
duce a configuration-dependent phase factor to treat a current-
carrying state such as the SF state in the regime of Mott phy2-L Hubbard model
ics.”? Without it, the SF state is never stabilized in models As models of cuprates andET organic conductors, we
permitting double occupation such as the Hubbard model. Wéensider the following Hubbard moddl (> 0) on extended
change the model parametdygt, t’'/t, and the doping rate square lattices (Fig. 1):
6 (= 1 - N/Ng) in a wide range, withN and Ns being the

numbers of electrons and sites, respectively. Additionally, we H = FHan+Hy
study the spin-current flux phase (sometimes called the spin- = - Z tij (ci*gc,-(, + H.c.) +U Z nipnj, (1)
nematic phase) using the same method. (i) j

Besides cuprates, we consider a model for layered organi

A N indi )
conductorsg-(BEDT-TTF)X, [henceforth, abbreviated as V\{%erenjg = CjoCio and (, j) |nd|gate§ the sum of pairs on
(ET),X] with X being a univalent anioi®~"® In these com- sitesi and]. In this work, the hopping integréj ist for near-

pounds, SC arises fdF, < 12 K, and a pseudogap behavioreSt neighborsx 0),t’ for diagonal neighbors, and 0 otherwise

similar to that of cuprates has been observed. Therefore, gé(k‘” = Hy + Hy) for the two lattices shown in Fig. 1. The

need to check whether its origin is identical to that of cuprateQ2r€ Energy dispersions are
Various low-energy properties @f%fl?éT)zx are considered to { —2t (coskx + cosky) — 4t’ cosky cosky,  (a)
be described by the Hubbard mot®¢bn an anisotropic two- €k y

dimensional triangular lattice. The value dft can be con- -2 (COSkX " COSky) -2 cos(kx " ky)' (b)
trolled by applying pressurdJ is estimated at) ~ W-2W  In the following, we usé and the lattice spacing as the units
with W being the band width® The degree of frustration of energy and length, respectively.

t’/t can be varied by substituting X or applying uniaxial pres- We refer to the former (latter) lattice as a frustrated square
sure.t’/t is estimated by ab initio calculations ag80.7 for  (anisotropic triangular) lattice for convenience. Tlifeetive
weakly frustrated compounds ard0.8 for the highly frus- values oft’/t are considered to be0.4—0.1 (~ 0.3) in hole-
trated compouna-(ET),Cu,(CN)s.”>77) Among the former doped (electron-doped) cuprafe®) For the organic com-
compounds, deuterated(ET),Cu[N(CN)]Br (t'/t ~ 0.4) pounds,t’/t is 0.4-08. Hubbard models have been exten-
under applied pressure has been shown to exhibit pseudogiyely studied, and we have shown that a first-order Mott tran-
behavior such as a steep decrease in the NMR spin-lattice sition occurs atl = U; ~ W at half filling for nonmagnetic

(@)

2



J. Phys. Soc. Jpn. DRAFT

(a) . (b) - with

" cosky + €7 cosk,

pd pd e d T = s 5
{7 AT, 0k Sox (5)

Sox = \/co§ Ky + 2 cos 2 cosky cosky + cog k,.  (6)

In HSF, a Peierls phase is added to the hopping integrals
Fig. 1. (Color online) Lattice connectivity or hopping paths in extendedSO that circular current flows in alternate directions in each
square lattice addressed in this study. (a) Frustrated square lattice for cupgataquette as shown in Fig. 2(a). In the present variational the-
SC_s. (b) Anis_otropic triar_lgular Iat_tice for organieET salt SCs. At lattice ory, 6 is a variational parameter to be optimized together with
points (solid circles), onsite repulsiahacts. the other parameters. Becaud€" breaks time-reversal and
lattice-translational symmetriedgr does not have these sym-
metries. The lower-band energy dispersiof-dt" is given as
cases and that a doped Mott insulator is realizedXor W
near half filling33-39n this paper, we show that similar Mott ESF(K) = —2tSpx = —+/ 1+cosd NEE+ AL ()
physics appears in the SF states. It has been shown that, in a ’ 2
wide range of the parameter space of concerd;SC state with
becomes stable compared with the projected Fermi sea (ordi-
nary normal state}®

&k —2t(cosky + cosky), (8)
A Ag(cosky — cosky), (9)

2.2 Trial wave functions andA, = 2tv/(1 - cos ?)/(1+ cos d). Equation (7) is sim-

‘We follow many-body variation theory using Jastrow-typ&,y 14 the quasiparticle dispersion of tdewave BCS wave
trial wave functions¥ = P®, wheref indicates a product of function. Note that some important features of the bhge

many-body projection (Jastrow) factors discussed Iate'qand(summarized in Appendix A) survive sy = Pbgr. We

is @ mean-field-type one-body wave function. do not consider Band-renormalizatiofiexts on¥sg because
As a normal (paramagnetic) and reference state, we Usgse que to diagonal currents or hopping are known to raise
projected Fermi sedy = Py, with the variational energy for typical cas&s.

Dy (t/t) = l_[ cl 10y, ©) The correlation factoP is defined as

keke /). o P =Py Pq Po. (10)
wheret; /t is a band-adjusting variational parameter indepens . . , I
dent oftl'//t inH andkF(tjl/t) dgnotes a Fernﬁ)i surface obtairpl)e:'};ere’guG s the fundamer;fl onsite (Gutzwiller) projection
by replacinge(t’) in Eq. (2) with e(t;). It was shown for : C.. r{)j[l ~ (L= g)nyy] gnr:ngQés aSI asymmfet(rjlc _pro;j
¥\ %8 that the band-renormalizatioffect throught; /t owing jection between a nearest-neighbor doubly occupied site (dou-

iorf is si .2 blon) and an empty site (holoA), s> 86)
to the electron correlatiorf) is sizable forU > U, a finite ) Pty ( )

t'/t, ands ~ 0. Pq = 1—[ [1 — 4d, ]_[ (1= hjur) = Znhy ﬂ (1-djc)|-
j T '

11)
whered; = nj;n;;, h; = (1-n;;)(1-n;;), andr runs over the
nearest-neighbor sites of sijeg, ¢4, and¢, are variational
parameters. As shown befote3¥ the doublon-holon (D-H)
binding dfect is crucial for appropriately treating Mott phys-
ics. At half filling, ¢4 andZ, become identical because of the
D-H symmetry. In addition t®¢ andPg, it is vital for the SF
state to introduce a phase-adjusting fagtgr which we will
explain in the next subsection.

Fig. 2. (Color online) (a) Schematic figure of local current in staggered . .
flux state. Arrows denote the directions of currents. (b) Peierls phase factgtss ~ Configuration-dependent phase factor
attached to hopping terms iHSF (a case of sublattice A); the sign of the A current-carrying state is essentially complex, because the
phase depends on the relative directions of the hopping and current. current is proportiona| t@P|2V®, if we represent the state as
Y(r) = [¥(r)|€®". Itis natural that when electron correlation
As a candidate for the pseudogap state, we study a cdg-introduced, the phase pad(r) varies accordingly. How-
related SF statePsy = Pdsr. Here, dgr is the one-body ever, the conventional correlation factdfs andPq, are real
SF state, namely, the ground state of the noninteracting ®Rd do not modify the phase ibsr. Therefore, we need to
Hamiltonian?SF [shown in Eq. (A1)], given as introduce an appropriate phase-adjusting factor into the trial
1 wave function. Such a phase factor was recently introduced
Dsp = Tod*rich + ) dkricl ||y, (4) for calculating the Drude and SC weights in strongly corre-
kl—kplﬂ VNs ;‘ Ao ;‘ Bl lated regimeg? thereby, a long-standing problem proposed
by Millis and Coppersmitff’—D-H binding wave functions
yield finite (namely incorrect) Drude weights even in the Mott
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insulating regime— was solved. parameters, bu¥sg with £, has lower energy thaiy, as
we will see below?) Incidentally, this type of phase factor
was also recently shown to be crucial for SF states in a Bose
Pl Pl Hubbard modéP) and ad-p model®® In the regime of Mott
(a) (b) () physics, the D-H bindingfects not only the real part but also

B e B A B B the phase in the wave function.
-— —_—
PRO Z P00 = DO

2.4 Variational Monte Carlo calculations

i 50 >-ifh . .. . .
© To estimate variational expectation values, we adopt a plain
L et osfg) €Y "o, VMC method?4-°") In this study, we repeat linear optimiza-

tion of each variational parameter with the other ones being
Fig. 3. (Color online) lllustration for assigning configuration—dependenlﬂx_ed'_typ'.ca”y for f9ur rounds Qf '_terat'on' The linear _Op“_'
phases in P;. Here, we assume that an electron hops insthdirection.  Mization Is convenient for obtaining an energy that is dis-
For the hopping in thy direction, the signs of and¢ have to be reversed. continuous in some parametesif this case). After con-
;he b(lpeiz”s)hpzase fa%c’f asfign?d??&i” zotfping [Fig-thz(b)]his Sh]?";gai” ~vergence, we continue the same processes for more than 16
€ Dlue dashe 0X. € values In the re 0oxes are the phase 1a rsin : FAE H
corresponding to the three-site parts shown. The ratit) (ndicated by red rounds and eStIr_nate the opt|m|zed ener_gy by aver_aglng the
arrows is produced bf, in hopping. data measured in these rounds, excluding excessively scat-
tered data (beyond twice the standard deviation). In each opti-
ization, 25x 10° samples are collected, so that substantially

We show that this type of phase factor also plays a vit bout 4x 10° measurements are averaged. Only¥gE with

role in the correlated SF state. {bsg, a phase) or -6 is — 16 ands = 0, the sample number is reduced t6:210° to
added when an electron hops to a nearest-neighbor site {ISV '

. S " . e CPU time. Typical statistical errors are“tGn the total
pending on the direction and position (sublattice), as ShOWé‘hergy and 16—2x 10-2 in the parameters, except near the

in Fig. 2(b). In the noninteracting case, such hopping OCCUIG o1t transition points. We use systems\af= Lx L sites with

equally in all directions. On the other hand, in the strongl)ﬁ = 10-18 under periodic-antiperiodic boundary conditions.
correlated regime, the probability of hopping depends on the

surrounding configuration (see Fig. 3). For example, wheB. Staggered Flux State at Half Filling

a D'H pair is created [configurat?ons_(a).and)j_(,alhe ne>.<t First, we study the unfrustrated cas€&s= 0) in order to

hopping occurs probably in the direction in which the Smgl}grasp the global features of the SF state because most of them
i

occupied configuration is recovered [configuration (b)]. Th o0 not change evenffis introduced. In this section, we focus
hopping process does not contribute to a global current in tlat?1 the half-filled case ’
Mott regime U > U,).%9 According to a previous study) to '
reduce the energy, it is important to cancel the phase attach\g:.(_iL Variational energy
in this type of hopping<£6) by introducing a phase parameter. Figure 4(a) shows the variational energy per siteFet
This hopping process can be specified by its local configu-
: . .2 measured from that oFy,
rations and, correspondingly, we can attach a phase-adjusting
variational factor to the trial wave function. To be more spe- E = ESF(9) - EN, (13)
cific, P, givese ¥ as shown by the solid boxes (red) in Fig. 3,

with ¢ being a variational parameter. This phase assignmen? a function ob for five values_ O.ﬂJ/t' Here, the variational
can be written as parameters other thahare optimized for bottWsg and Wy.

, The size dependence in the casd&Jgf = 12 is al§o shown to
. see the convergence of the values. Bgt = 6, E monoton-
P = exp[@Z(—l)“l Z duj ically increases as a function 6f This behavior is the same
=t J for U/t = 0 shown in Fig. A2(b) in Appendix A. Hence¥sr
is not stabilized for small values &f/t. The situation changes
for U/t > 6; E/t becomes considerably negative for finite
and has a minimum &= ~ 0.2 for large values ob) /t (= 8—
16). This behavior is qualitatively consistent with that of the
t-J model, the results of which are summarized in Appendix B
for comparison. In Fig. 4(b), we plot the optimized values of

X (h/l,j+x +hpjx = hajay — h/l,j—y) }’ (12)

wherex andy indicate the lattice vectors in theandy di-
rections, respectively] = 1 (1 = 2) indicates sublattice A
(B), andj runs over all the lattice points in sublattide By

tig H _ H i
#4, @ phase factoe™ is assigned to a D-H creation or anni the configuration-dependent phase fagtais a function o#.

. . . . x‘e . . .
e i e o i heoptmized it ncicaed by ot very loe o
C ' ially for | I . As di i 2.
¢ = @ holds, the total phase shift in a D-H process vanisfes. especially for large values bf/t. As discussed in Sect. 2.3,

.- the Peierls phasgin the hopping process is mostly canceled
8§S¢ Although# is canceled out, the statiésr preserves the
nature of the original flux state, as shown shortly in Sects. 3.3
3fd 3.4. That is, a local staggered current flows and the mo-
mentum distribution function has a typidaldependence.

Next, we discuss the/t dependence of the energy gain of

e fully optimized¥sg with respect to the reference statg,

not appear in an exchange process intddemodel. On the
other hand, the phase is not canceled in the hopping proces
unrelated to doublons (or of isolated holoAY).

The configuration-dependent phase fadtgris conceptu-
ally distinct from position-dependent phase factors used l[ﬂ
various contexts® 43 °9)Note that, withoutP,, the energy of
the SF state is never reduced from thatigf for any model AE(SF) = E(N) — E(SF) (14)
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0.04 — —
L=10 Uk ing study (Ref. 35 % but we adopt Eq. (11) foPq. For
0.02 § = 0andU > U, ¥q is not SC but Mott insulating. In
Fig. 5, each state exhibits a maximumtat~ W (= 8t). The
o Offe system-size dependenceAdE for each state is large near the
' maximum but, as shown in the inset of Fig. & remains

finite and the order of the variational energy will not change
asL — oo. AE(AF) is largest, i.e., the AF state has the lowest
energy for anyJ/t.3%) For the SF stateAE(SF) ~ 0 for small
values ofU/t (s 5). AlthoughAE(SF) is always smaller than
AE(d-SC), it is close toAE(d-SC). At U/t ~ 5, AE(SF)
starts to increase abruptly. The rangeJgf whereWsgis sta-
ot bilized (U/t > 5) is similar to that of¥4. In addition, the

’ behavior of physical quantities such as the momentum dis-
tribution function is similar betweeWsg and ¥4 as shown
shortly. As mentioned, in the Heisenberg modigi(g = 0)
and%¥q4(g = 0) are equivalent due to the SU(2) symmetry, but
in the Hubbard model, the two states are not equivalent, prob-
ably due to the dference in the distribution of doublons and
holons.

¢/

Staggered flux 3.2 SF transition and Mott transition
F— ofl . sz . 0{3 . 0f4 s Figure 6 s_hows the opt?mizefda_ndq& in Ysg as a function
0/ of U/t. We find two transition pointssg/t at~ 4 — 5 and
Uc/t at ~ 7. The former corresponds to the SF transition at

Fig. 4. (Color online) (a) Variational energy per site of the staggered quWhiCh Vs starts to have finite and¢ and its variational en-
state¥sr (includingP,) measured from that oFy [E(¢ = 0)] as a function  €rgy becomes lower than that ¥§. The latter corresponds
of ¢ for several values of)/t (L = 10) in the Hubbard model at half filling. to a Mott transition at which the system starts to have a gap in

phase parameter for the same values dj/t as in (a). The line o = @ is tUc/t
added for comparison. The size dependence in (b) is small. In both pane{f‘s, ert

the arrows indicate the optimal valuestofvhenE /t is minimum.

' T "-0.3——————— 1
0.15F 5 A

0.1

Oln, ¢/m

AE |t

0.05

Fig. 6. (Color online) Optimized phase parametefisafid ¢) in WsF at
Fig. 5. (Color online) Energy gain of AF-SC, and SF states with respect half filling. The arrows indicate the Mott transitiob)¢/t) and SF transition
to projected Fermi seatfy) at half filling as functions otJ/t. Data forlL = (Ugg/t) for four system sizes. The inset shows the same quantities for a wider
14, 12, and 10 for each state are plotted as solid lines with symbols, daﬁﬁnge ofU/t, with the arrows denotinglc/t andUsg/t for L = 16.
dotted lines, and dashed lines, respectively. A guide curve proportional to
t/U is drawn forAE(SF) withL = 14 (dash-dotted line). In the inset, the
system-size dependence is shownlfiyt = 8.0 and fitted by second-order
polynomials.

At Usg/t, 8 andg exhibit first-order-transition-like discon-
tinuities, for example, at)sg/t = 6.28 for L = 10. However,
asL increasesUsg/t shifts to lower values and the discon-
tinuities become small and unclear, suggesting that the SF
o ) ) transition is continuous and occurs at a snslt. Because
whereE(N) and E(SF) are the optimized (including ener- 5 ahnropriate scaling function is not known, we simply per-
gies per site offy andWs, respectively. IfAE(SF) is posi-  ¢5rm a polynomial fit ofUsg/t up to the square of /L2 as a
tive, the SF state is stabilized with respectiq. In Fig. 5, rough estimate. This yieldsse/t = 2.93 for L = oo with a
we showAE(SF) compared with other ordered states, i.e., thgmall error. In any case, sinéeand¢ are tiny forU/t < 5,

AF state,¥ar = PDar, and thed-SC (projected BCS) state, e consider thaWs is substantially not stable in a weakly
Yy = PDy. We use the sam@ar anddy as in the preced- correlated regime.
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1 T T T T T T T T T
- Staggered flux - On the basis of the single-mode approximati&iro) ex-
0.8~ 5=0.0 0.2 citations in the charge sector are gapless whé¢m) o |q|
oL for |gl — 0, whereas a gap opens in the charge sector when
0.6 y LT N(q) o« |g2. For S(q), a similar relation holds for the spin
oot ; O © sector, although excitations cannot be sharply divided into the
0.4 0.1 charge and spin sectors except for in one-dimensional sys-
tems. In Figs. 8(b) and 8(cN(q) andS(q) are respectively
0.2 shown for various values dfi/t. For U < Usgg, both N(q)
T andS(q) behave linearly fofg] — 0 as expected for a Fermi
ey T S S liquid. ForU > U, the behaviors of both(q) andS(q) ap-
U/t pear to be quadratic and consistent with a Mott insulator. For

Use < U < U, N(q) is linear near (00), whereass(q) is
Fig. 7. (Color online)U/t dependences of optimized D-H binding F’aram‘quadratic-likel,oe) indicating that the state is a spin-gap metal.
eter! (= ¢g4 = &) in Wsk and density of doublond shown at half filling for Namely the charge and spin sectors shafedent tendencies
some system sizes. The arrow indicates the Mott transition point. . N . e - .
in excitation. This feature is distinct from that of the noninter-
acting SF staté@sg, which has a gap common to both sectors,
_ - and thusN(qg) = S(q) holds (see Appendix A). Therefore, the
Next, we examine the Mott transition k./t, where the metallic SF state stable fdyse < U < U, is not perturba-
behaviors o# and¢ change as shown in Fig. 8lc/t = 7.1 tively connected tabsr. We will show in the next section that

for L = 16190199 (Note that in the-J model, the Mott tran-  this state is connected to the metallic SF state in the doped
sition cannot be discussed.) To confirm thiay/t is a Mott case.

transition, we plot theJ/t-dependences of the optimized D-

H binding parametet (= ¢4 = ¢,) and the doublon density 3.4 Circular current

d = Ey/U in Fig. 7. These quantities are sensitive indicators Now, we turn to the local circular current in a plaquette
of Mott transitions. In Fig. 7, we find abrupt changes in bpth defined as

andd atU./t, similarly to those in the Mott transitions gy 1 o

and¥n.3 In Y, discontinuities iy andd at Uc/t are not  Jc/t = N Z Z(—l)””m(CLwa,a - ¢} Criro) (18)
found even for the largest system we trdat{16). However, Steho T

because the behavior of battandd becomes more singular
asL increases, we consider that this transition is first-ord
similarly to those inPq and¥y.3¥

where¢ runs over all the A sublattice siteé,= ¢, + &y, T
€ndicates the nearest-neighbor directions, and I [-1] for
7 = (£1,0) [(0,£1)]. Jc is regarded as the order parameter
) of the SF phase. In the main panel of Fig. 9, we shaw/t
3.3 Spin-gapmetal at half filling as a function ofJ/t. In the metallic SF phase
In the intermediate regimese < U < U, the present SF (yg. < U < U,), a relatively large current flows. In the insu-
state is expected to be metallic. In order to clarify the naturl%ting SF phasel{ > U), the local current is reduced but still
of Wsg, we calculate the momentum distribution function  finite. At U/t = 12, howevenJcl/t is 1/20 of that indse with
1 . the sam@. TheU/t-dependence al:/t in this regime is fitted
n(k) = 2 Z<Ck<fck‘7> (15) by a curve proportional tat(U)? and the system-size depen-
o ] y dence is small, as shown in Fig. 9. This suggests dgdh
for the optimized¥sr. Figure 8(a) shows(k) along the path  hjs range ofJ/t has a localized nature. More specifically]
(0, 0)-(m, 0)-(, 7)-(0, 0) in the original Brillouin zone for var- || pe related to the local four-site ring exchange interaction,
ious values ofU/t. In the region ofU < Usr (i.e.,6 = 0), \hich appears in the fourth-order perturbation with respect to
we find two discontinuities (crossings of the Fermi surfacet)/u in the larget) expansion of the Hubbard model.
atk ~ (m,0) and fr/2,7/2), indicating a typical Fermi lig-
uid. ForUsg < U < U, (half-solid symbols), the discon- 4. Staggered Flux State at Finite Doping
tinuity atk ~ (z,0) disappears, while the discontinuity at4 1 Energy gain and optimized phase parameters
k ~ (n/2, 7r_/2) remains. This is qu_alitatively idenFicaI tq that First, we show the energy gain s with respect to the
of the noninteracting SF statesr, in which there is a DiraC oterence staty [Eq. (14)] in Fig. 10(a) for four values of
point at /2, /2) and a certain gap opens near the antinod@le qoping rates. Similarly to the half-filled case (Fig. 5),
points. On the other hand, f&f > Uc (solid symbols), both ¢ is zero for the weakly correlated regime (< Usg); the

discontinuities disappear, indicating that a gap opens in g, of the SF transitiosg/t, increases asincreases. The

whole Brillouin zone. This is consistent with a Mott insulator.sharp peak oAE for § = 0 changes to a broader peak with a
We can reveal the characters of the gaps to some extent by i1 atU/t ~ 12 — 16, and finally vanishes t= 5sr ~
analyzing the charge density and spin structure factors, 01 ’

1 i0(R—R In Fig. 10(b), optimized values of the phase parameters are
- = AR-R) (qn:) - n?
N@ = Ns ZJ ¢ J (n.n,> " (16) plotted. Both parameters decrease ascreases. Although
. and ¢ have a discontinuity at/sg/t at this system size, this
s(@ = izeiq.(Ri—Ri) (SiZS?>. (17) behavior is owing toafiriite-sizeﬂ’e_ct}W) The SF transition
Ns 7 J for L — oo will be continuous, similarly to the half-filled

case. When we compare with the results at0, we see that
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Fig. 8. (Color online) Correlation functions in momentum spacelgf at half filling for various values otJ/t. (a) Momentum distribution function, (b)
charge density structure factor, and (c) spin structure factor. In the inset in (c), the system-size depertsigy)qe 6f 10-16) for typical cases of a Fermi
liquid (U/t = 4) and spin-gap metal)/t = 6.5) is shown for smallg| in the direction of (00)—(r, 0). See also Ref. 106. Open (black) symbols aréffar Usg
(i.e.,0 = 0), half-solid (brown) symbols fddsg < U < U¢, and solid (red) symbols fad > Uc. For this system sizd (= 14),Usg/t ~ 5.05 andU/t ~ 7.1.
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Fig. 9. (Color online) Absolute values of local circular current at half fill- 02 g
ing as a function ofJ/t for some system sizes. The SF and Mott transition N
. ) 2. RS
points are shown by arrows. A curve proportional tdJ))= is shown by a R
gray dash-dotted line. The inset shows the same quantity for some doping §
rates forL = 12 (discussed in Sect. 4). 0.1
i . . . (b) Staggered flux
dgris realized in the strongly correlated regiduh ¢ W), and ¥ - - !

it is smoothly connected to the Mott insulating state at half 0 USF/rT H IOT U/t 20 {0

filling. It is also interesting thap becomes larger thathasés

increases, while they are close to each other wher®. This  Fig. 10. (Color online) (a) Energy gain of SF state with respectfp as

suggests thag overscreens the phagén the D-H processes a function ofU/t for four values of doping raté (L = 12). Fors = 0, data

owing to the increasing number of free-holon processes. for three system sizes are shown. (b) Optimized phase pararaeteds. In
Figure 11 shows the-dependence oAE/t for the case both panels, the SF transition is indicated by arrows.

with U/t = 16. Except for the case with = 0, AE/t mono-

tonically decreases as a function®fBecause thé depen-

dence is appreciablése should be somewhat larger in thea discontinuity neara(/2, 7/2), indicating that¥sg is always

L — oo limit. The behavior ofAE is consistent with that for metallic and there is no Mott transition. Furthermogq)

thet-J model shown in Appendix B%) In the inset of Fig. 11, is linear in|qg| for |g| — 0, indicating that the charge degree

thes-dependences of the optimizédndg are plotted. Their of freedom is gapless. On the other ha8¢j) appears to be

system-size dependences are very small. approximately quadratic at smadj| for U > Usg, suggest-
ing that the SF state in the doped region has a gap in the spin
4.2 Various properties sector.

(i) Spin-gap metalln Fig. 12, we show the behavior of (i) Segmented Fermi surfacghe bare SF stat@sr, has a
correlation functions in the momentum spaxtk), N(q), and segmented (or small) Fermi surface arolind (7/2,7/2) as
S(q) for 6 = 0.0556 (L = 12). TheU/t-dependences of shown in Appendix A (see Fig.-A). Here we show that this
these quantities are basically similar to those at half fillin§eature is preserved for strongly correlated cases. Shown in
discussed in Fig. 8. In the region of > Usg, n(k) preserves Fig. 13 are contour maps afk) for U/t = 12 and four values
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Fig. 12. (Color online) Behavior of (a) momentum distribution function, (b) charge density structure factor, and (c) spin structure figtdooa finite
doping ¢ = 0.0556) and various values bf/t. Open (black) symbols are f&f < Usg and half-solid (brown) symbols are far > Usg. For this system size
(L = 12) and doping, the SF transition isldgg/t = 7.92.
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Fig. 11. (Color online) Energy gain of SF state with respectitg as a
function of doping rate dt)/t = 16. Data for four system sizes are shown. In
the inset, the optimized phase parameteaad¢ are shown.

of 6. Here, we show the data fot/t = —0.3 becaus&sk is

stabilized in a wide doping range (see Fig. 15 later) and tt

behavior is similar to that for /t = 0. At half filling, there is

no Fermi surface, as shown in panel (a). Upon doping, hov

.ever’ pocket Fermi surfaces appgar arouri@,(r/2) and, as§ Fig. 13. (Color online) Contour maps of momentum distribution function

increases, they extend to the antinodes along the AF Brlllou;{(\() of the optimized¥sr in the original Brillouin zone fort’/t = —0.3,

Zone Edge. These Fermi surfaces are shown by blue daSIDﬁd: 12,L = 10 — 14, and four values @fin (a)-(d). The wiggles of lines

ovals in panels (b)-(d). A gap remains open neafj. are simply due to the small numberlopoints and are notimportant. The AF

(iii) Circular currents The local circular currentsc de- Brillouin zone bour_ldary isindicatec_i by pink dotted Ii_nes, and zone-diagonal

fined in Eq. (18) for the doped cases have already been Show. S are showq with gray dotted lines in (c). Fermi surfaces are indicated

. . . . S with blue ovals in the third quadrants. In (d), the scattering vector fQ

in the inset of Flg. 9, where the evolution M with increas- connecting the antinodes, discussed in Sect. 6.4, is shown with a blue arrow.

ing 6 is shown as a function df/t. We find thatJc increases

as¢ increases, although the optimized phase paramgeterd

¢ decrease [see Fig. 10(b)]. This is probably because the num- _ )

ber of mobile carriers increases@gcreases in the strongly ©-  Effect of Diagonal Hoppingt’

correlated regime, whose feature is typical of a doped Mott In this section, we study thefect of diagonal hopping in

insulator. In contrast, as shown in Appendix J, decreases the two cases shown in Fig. 1.

as¢ increases in the noninteractimgse. At the phase tran-

sition pointdsg, whereE(SF) becomes equal ®(N), the or- 5.1 Frustrated square lattice

der parametddc|/t drops suddenly from.@5-Q3 (almost the Figure 14 summarizes the total energie¥gf, ¥\, and¥y

maximum value) to zero. This indicates that this transition ias functions of’/t. Note that the energy fo¥y without band

first-order, in contrast to the corresponding AF @8 C tran-  renormalization exhibits complicated behaviors as a function

sitions, as a function af. of t’/t. This is because the occupikéeoints in the Fermi sur-
face change discontinuously @y . However, if we consider
the band-renormalizationffect® for ¥y and use the opti-
mizedt; /t, the lowest energy fo¥y becomes the black solid




J. Phys. Soc. Jpn. DRAFT

T
" 7 5=0.0278 A
e @ ! U/t=12
bammen et gen L=12
L=12 L om e T
-0.2-707F Normal  “*=7. [ \‘\\ -
—— Normal (opt) | | N i
hay —a— Stag. flux i e \\\\ v
w —=— d-wave =~  —— Normal (opt.) RN
- —=— d-wave (opt.) w | —*— Staggered flux
—=— d-wave
3=0.0 +
- -0.35%
03 U/t=12 I ]
Possag o o o i
N S S BT P R RS M.
-0.5 0.5 -0.5 0.5
t/t t/t
-0.55, ———
L — i
© A ]
5=0.0833 ]| 08 N
U/t=12 7 - ]
3 L=12 1 w :
i b -0.65 ]
i Normel (opt.) W ] :
| —— Staggered flux X ] ]
| —=—d-wave \ ] -0.7 _
-0.551 —=— d-wave (opt.) ] VW’E‘B\E\S\Q tlcl ]
| Frustrated square d ; 0.59= = YRR Y 1 oxl
) | ) ) ) ) | ) ) ) ) | ) ‘O.7u I o 5 n I I hn O I
-0.5 0 0.5 ~
t' / t t' / t

Fig. 14. (Color online) Comparison of total energies amdhg ¥sr, and¥q as functions of’ /t in frustrated square lattice &f= 12. Panels (a)-(c) display
the cases of dierent doping rates fdd/t = 12 and (d) shows the caseldft = 8 ands = 0.0833. In (a), data fok = 10 are also shown. Symbols are common
to all panels. The black and red bold lines indicate the valud§ond¥q, respectively, when the band-renormalizatidieet is considered (for details, see
Ref. 38). The arrows indicate the positions of the energy crossings. The inset in (d) shows a magnification of the area of energy crossings.

line in Fig. 14. We use the solid lines as energiestqr Al-
though we expect some sizffexts in¥y, we can see general
trends of the energy flerences betweeHsr, ¥y, and¥gy.

At half filling [Fig. 14(a)], E is symmetric with respect to
t’/t = 0 owing to the electron-hole symmetiy).E(SF) is al-
ways lower tharE(N) and does not depend dfyt because
(Hy) = 0 for anyt’/t andU/t. E(d—SC) tends to increase
as|t’'/t| increases. (When band renormalization is taken into
accountE(d—SC) also becomes constafttt) i ]

In a slightly doped case [Fig. 14(b)} for every state be- 4 .Fru?tra.ted. e
comes a decreasing function ©ft, but the order of the en- 0 0.05 0.1 0.15
ergies does not changE(SF) slightly depends oti and re- S
mains a linear function of . However, for larges, the situ-
ation changes as shown in Fig. 14(c). The rang&(@F) < Fig. 16. (Color online) Phase diagram between SF and normal states in
E(N) is restricted m(/:z <t < tél’ as indicated by arrows. This U plane for three values f/t. The area of the_ SF phas_e may be s_omewhat
range becomes smaller wheht decreases [Fig. 14(d)]. We smaller foré ~ 0 because the band renormalizationtg is not considered

. . ! here.
also find that this stable range#&r becomes smaller a@in-
creases and finally vanishessgt ~ 0.16 (012) forU/t = 12
and 16 (8).

Obtaining similar data for dierent values of, t'/t, andL,
we construct a phase diagram, as shown in Fig. 15(a). T
stable area of the SF state expands above the optimum dopm/g X .
of cuprates ~ 0.15) for —0.4 < t'/t < —0.1, which corre- /1= —.0.3 (corresponding to the hol_e—doped case), the SF is
sponds to the hole-doped cuprates LAscreases, the area of Stable in the whole underdoped regingeq 0.16) for U/t 2
Wgr tends to expand slightly. Fat/t > 0, on the other hand, 10- IN contrast, fott’/t = 0.2 (electron-doped casellsr/t
the area ofsg shrinks to a very close vicinity of half filling, rapld]y Increases a%m.creas.es.
especially forU/t = 8. This _st_ab|I|ty of‘?sp ina wide range ob for 0.4 < t'/t

Itis useful to draw a phase diagram in theJ plane. Figure —0.1 originates primarily from the largg/t dependence of

16 shows the region in which the SF state is stabilized for
fhe cases witlt’/t = -0.3, 0, and @. Irrespective oft’/t,
boundary valug)sg/t, increases asincreased® 110For
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Fig. 15. (Color online) Phase diagrams in thé’ plane with doping rates and frustration strengtht’(t) for (a) the frustrated square lattice and (b) the
anisotropic triangular lattice fdd/t = 8 and 12 [and 16 in (a)]. “Ordinary normal” indicates the projected Fermi sea. The symbols with vertical bars placed at
t’/t ~ —0.25 indicate that the SF state is not stabilized at these valugsTtie scale of the abscissa is identical in the two panels.

Yy and the very smalt’/t dependence o¥sr. This means
that the nature o¥sefor t’ = 0 quantitatively remains that for " T '

'/t # 0. For example, we show in Fig. 17 tti¢t dependences 100 GLW"ﬂﬂe}t th, L " 1
of the optimized phase parameters and local circular current, e i% _8_3 1122 n

Jec, which do not strongly depend dryt. Furthermore, we | —A i
confirm that the momentum distribution functiok) is al- AV B
most the same fdtf/t # 0. Note that this is in sharp contrastto "o o - - % R & A~ _
thed-SC state, in whicn(k) in the antinodal region markedly ek Ot o -
changes with’ /t (see Fig. 29 in Ref. 35). The reason for this - I ‘;- o ig 8 1421 1
difference betweeWsg and¥y will be as follows. SincéPsg ) - WX e-12 0 14
is very appropriately defined for the simple square lattice, A0 i BT
change the wave function &sg only slightly. On the other i ~®-12 -03 14
hand,¥q has a gap opening at the Fermi surface nead)( 0 0.1 0.2
which is markedly fected byt’. In this context, it is natural o

to expect that extra current, such as dlagonal currents in Chl@gl). 18. (Color online) Inverse charge susceptibility of the SF state shown

; 11) \wji 3
spin stateé, )will not be favored’® as a function of doping rat&for some parameter sets for the frustrated square
lattice [Fig. 1(a)]. We add guide lines (thick dashed) fgt = 0 and-0.3
(U/t = 12,L = 14). The same quantity of thieSC state is also shown with

0.4 , T , T , T ' : ' 0.2 half-solid green symbols for comparison. Zigzags of the dat¥fgrare due
Frustrated square Vclt O/x ¢/x S to the discontinuous change in the occuplegoints and other finite-size
i —e————v—(.0833 effects.
0.3%&” ]
Jol /
R L el /¢ &
io_z_ """" gir T o j case. To this end, we consider the charge compressibitity
-l - N equivalently the charge susceptibiligy (= n’«), the inverse
W of which is given as
0.1 e “metastable
2
L _A_—_ﬁ_—_ﬁ——A—A—A—A_A_A_A_A__A U/t=12 -1 — (9 E(n) - N2 E(N + 4) + E(N — 4) — ZE(N) (19)
L=12 c SN2 s 42 ’
0 Il L Il L Il L Il L Il 0
06 04 02 0 0.2 with n = N/Ns. If y;1 < 0, the system is unstable toward

v phase separation. In Fig. 18, we show thdependence of

Fig. 17. (Color online}t’/t dependences of the optimized phase parametef)‘g‘;1 for three values of /t and.L' We f.md tha;\/gl I,S basically

9 and¢ and the local circular currerilc in Wsr for two values ofs. The ~negative fort’/t = 0 and 03, indicating that¥sg is unstable

unstable regions ofsr are indicated by gray dashed lines and “metastabletoward phase separation (data points of 0 should be dis-
regarded because they aféeated by the Mott singularity at

In many studies on theJ and Hubbard models, the insta-d — 0). This result is consistent with the previous one for the

bility toward phase separation near half filling has been di¢-J model fort’/t = 059 In contrast, fort’ /t = —0.3, xg* be-

cussed. Recently, states with AF long-range orders have begines positive fob > 0.05 and comparable to that dfSC

shown to be unstable toward phase separation,fbp 0 for (green symbols). Therefore, a homogeneous SF state is pOSSi-

the Hubbard model using the VMC methér®® 112-114For  ble for the parameters of hole-doped cuprates.

thet-J model, an SF state has also been shown to be unstable

toward phase separation in a wide range &r t'/t = 0.5

Therefore, we need to check this instability in the present

10
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5.2 Anisotropic triangular lattice Usr/t between¥sg andWy increases ag/t increases.

For the anisotropic triangular lattice, Fig. 19 summarizes As shown before, the Mott transition occurslég ~ 7.1t
the total energies oPsr, ¥y, and¥q4 as a function oft’/t.  fort” = 0. Since the properties &fse are similar to the case
Again, E(N), the lowest energy ofy considering band renor- of t' = 0, the SF state is metallic f& < U. and insulating
malization3® is shown by the black solid lines. First, letfor U > Uc. This phase boundary is also shown in Fig. 20.
us consider the half-filled case [Fig. 19(alj.is symmetric
with respect ta’/t = 0 owing to the electron-hole symme-
try.3®) Similarly to the case on the frustrated square lattice,

E(FS) andE(d—SC) (if the band renormalization is consid- e

ered'®116) are constant. For the ground state, we find from 12 Aniso. triangular

Fig. 19(a) that?y has a lower energy that for t’ > tg . with L 0=00

tgo/t = 0.807 forL = 12. However, thex, n)-AF state or in- 10+
commensurate AF states including the case of & $2Qcture . Steggeredflx .o
has a lower energy at half filling>-117" S 8Fun i

6] 7 to ty L
s e 10
cL T e ——12
T T T T a | 14
0 05 1 15

-0.35

Fig. 20. (Color online) Phase diagram between the SF and normal states in
t’-U plane at half filling on anisotropic triangular lattice. Boundariggg,

solid lines) are determined for three system sizes. The green arrow near the
vertical axis represents the range of the metallic SF state. The dashed lines
show the boundary iy regarding whether the nesting condition is restored
(t2 = 0) or not (1 # 0) in the renormalized band (see Sect. 6.2 later).

For a doped case, we show in Fig. 19(b)thedependence
of the total energy for the three states for typical parameters.
It is noteworthy thak&/t for ¥y andW¥4 decreases rapidly for
large values oft’/t| (~ 1). Obtaining similar data for various
values oft’/t and§, we construct a phase diagram in the
space [Fig. 15(b)]. Compared with the case of the frustrated

-0.45

-0.36

-0.38 square lattice [Fig. 15(a)], the area'B§r is restricted to the
small doping region.
W4k 6. Discussion
6.1 Phase cancelation mechanism
First, let us consider intuitively wh¥'sg has a low energy
-0.42

in the strongly correlated region of the Hubbard model. As
discussed in a previous stuéf) the processes corresponding
to theJ term in thet-J model are those in which a D-H pair
is created or annihilated as shown in Fig. 21(a). Generally
Fig. 19. (Color online) Comparison of total energy amotig, ¥sr, and speqkmg, the phase yielded in thlsl er’Ce?S causes a loss of
¥ as functions of’/t. Panel (a) displays the half-filed case fdyt = 8  Kinetic energy. In order to reduce this kinetic energy loss, the
(only the data fot’/t > 0 are shown) antl = 10 and 12, and (b) a doped case phasef should be eliminated by the phagédy applying®,
for U/t = 12 (5 = 0.0556) and. = 12. We show the optimized values by the with ¢ ~ @ in the same manner as introduced in Ref. 72.
SZP;fL‘igor;z'ZggO:hf:m ;’r‘:'t(g)(s\'liﬁk;?zg"sle"z ”Tnh: band-renormalized  \ne expect a similar phenomenon in the Heisenberg inter-
¢ ' action in thet-J model. In thel term, ant spin at sité hops to
We compare the energies betwekg and Wsr, assuming Site j (= i +7) and simultaneously aspin at sitej hops to site
that AF states are not stabilized. In Fig. 19(#) is more i. As shown in Fig. 21(b), if the former hopping yields a phase
stable than¥y for t' < t/, with t/,/t = 0.749 (0763) for 0, the latter yields-6 in dsg; the total phase in the exchange
U/t = 8 andL = 12 (10). We employ the valug/t = 8 sim-  process precisely cancels out (shown in the square brackets in
ply because it is frequently used as a plausible value-f6f  Fig. 21). Since the two processes occur simultaneously, it is
salts’® Actually, Wsr is Mott insulating atJ/t = 8; a value of unnecessary to introdugen thet-J model to stabilize the SF
U/t < 7.1is necessary for a metallic state. However, the poirgtate. On the other hand, in the Hubbard model [Fig. 21(a)],
here does not change qualitatively irrespective of whether @ hopping resulting in D-H-pair annihilation does not neces-
is insulating or metallic. On the basis of similar calculationsarily occur immediately after a D-H pair is created; these
for various values ofJ/t andt’/t, we construct a phase dia- two processes are mutually independent events. Therefore, it
gram within the SF and normal state at half filling (Fig. 20)is necessary to introduce the phas®® eliminate+6 in each
which is relevant for organic conductors. The boundary valugrocess in order to stabilize the SF state.
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(a) Wp (Hubbard) — (b) Wp (1-)) (©) Psc (t-J)
D-H process exhange exchange
ei(@-(f)) eiﬁ 8i9
Y Y N
~N
~ il = i0 = p2i0 > -
bhea d drea § fee
S S
e-i(6-9) et eit
Fig. 21. (Color online) lllustration of phase factors added in (a) creation . | . | , |

or annihilation process of doublon-holon (D-H) pair ifsr for largeU/t
Hubbard model, (b)~spin exchange proces¥ g for t-J model, and (c) spin
exchange process sscfor t-J model. For details, see text.

03 © 4 5=0 L

Finally, let us apply the present mechanism to the spin-
current-carrying state. Staggered spin current (SSC) states (or
sometimes called spin-nematic st&#shave been consid-
ered to be candidates for hidden orders in various systé&ths. |
In these states, counter-rotating current$ @ind| spins al- 0.1k i
ternately flow in each plaquette [Fig..XXb)]. We have car- . | . | . |
ried out similar VMC calculations for the projected SSC state
Pssc = Pa(0)Pssc The results are summarized in Appendix
C. We conclude tha¥sscis not stabilized for any/t and un-  Fig. 22. (Color online) The two components of the energgfatience be-
derdopeds. We can easily see the reason for this by considween the SF state and the projected Fermi sea are shown for some doping
ering the phase cancelation. As we can see from Fig. 21(6;'593 {'/t =0,U/t = 12): (a) kinetic energy and (b) intergcti(_)n energy parts.
the total phase added in an exchange procesiisiggt re- Lo_r izz 0, we add data fot. = 10 and 14. The arrows indicatésg/t for
mains 2. We found that this phase isfiicult to eliminate
by configuration-dependent phase factors suchas here-
fore, we conclude that the SSC state or spin-nematic state Wilhetic energy gain for a sficiently largeU /t.119
never be stabilized.

AEy;/ t

U/t

o _ 6.3 Comparison with experiments
6.2 Kinetic energy gain (i) High-T. cuprates Here, we discuss the lattice trans-
We discuss another physical reason for the stabilization ftional symmetry, which is broken in the present SF state.
the SF state. In Fig. 22. we show thefdrence in the kinetic The peaks arising from local loop currents in the polarized
energyAE; and interaction energ&Ey between the optimal peutron scattering spectra are foundkat (0, 0).17-19 sug-

SF state and the projected Fermi sea, gesting that the lattice translational symmetry is preserved
AE; = E(N)- E(SF) in the pseudogap phase. Some authors have argued that the
AEy = Ey(N)-Ey(SF) (20) SF state breaks this symmetry, but physical quantities calcu-

lated with SF states display a (@) peak in addition to an( )
for four values ob. In previous papers, we perfomed the samge k120 The above neutron experiments appear to be consis-
analysis for¥q and'¥y,***" and showed that the SC transi-tent with more complicated circular-current states that do not
tion is driven by the kinetic energy gain ftf > Uco With  preak this symmetr§P: 121 122Recently, however, one of the
Uco/t being the crossover value from weakly to strongly coraythors showed that this type of circular-current state is not
related regimes. In Fig. 22, we find that a similar phenomenafiapilized with respect to the normal state in a wide range of
emerges betweeflsr and'¥'y: Kinetic energy gain occurs in the model parameters on the basis of systematic VMC cal-
the strongly correlated region. The physical reason for thig)jations with refined wave functions fok p-type models.
will be as follows. In the strongly correlated regime, the kiynstead, SF states are stabilized in some parameter réfijes.
netic energy is dominated by the D-H pair creation or annihion, the other hand, the shadow bands observed in the ARPES
lation processes (not shown). Since the phases arising inthgﬁgctragﬁ—ﬂ) which also characterize the pseudogap phase,
processes are canceled outdyythis kinetic energy gain cor- seem to require the scattering af £) and a folded Brillouin

responds to that in thé-term in thet-J model. zone. Therefore, the issue of translational symmetry breaking
In Fig. 23. we show a similar comparison betweendt8C s still controversial.
and optimal SF states, i.e., (i) Organic conductors In Sect. 5.2, we studied the
AE, = E(SF)- E(d-SC) anisotropic triangular lattice. Let us here discuss the rele-
AEy = Ey(SF)- Ey(d-SC) (21) Vvance of the present results to experiments. As discussed in

Sect. 1, deuterated-(ET),Cu[N(CN)]Br hast’'/t ~ 0.4.
In particular, in the regime df > U(SF) at half filling and  The present results show that the SF state is stabilized for
U > Usefor 6 > 0O, the energy gain occurs exclusively inthe case oft’'/t ~ 0.4. Therefore, the pseudogap behavior
the kinetic part AE; > 0 andAEy < 0). Thus, the cause for T > T. observed in deuteratee(ET),Cu[N(CN)]Br
of stabilization both in¥y — ¥srand inWsg — Wy isthe s probably caused by the SF state. On the other hand,
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It revealed that the AF state is considerably stable and occu-
pies a wide range of the ground-state phase diagram. In doped
metallic cases far /t < —0.05, an AF state called type-(ii) AF
state is stabilized, while far/t > —0.05, a type-(i) AF state

is stabilized. In a type-(ii) AF state, a pocket Fermi surface
arises aroundr(/2, 7/2) and a gap opens in the antinode [near
(r,0)]. As 6 increases, the Fermi surface around2( z/2)
extends toward the antinodes along the AF Brillouin zone
edge. Such behavior resembles the pseudogap phenomena,
as the SF state treated in this paper does. Thus, if such fea-
tures are preserved when the AF long-range order is broken
into a short-range order for some reason, as actually observed
in cuprates?” a (disordered) type-(ii) AF state becomes an-
other candidate for a pseudogap state, although the symmetry
breaking is rather dierent from that in the SF state.

Let us discuss the coexistence withSC. The same
study?® as discussed above showed that, although type-(ii)
AF states do not coexist with-SC, metallic AF states for
t'/t » —0.05 [called type-(i) AF] coexist withd-SC; these
0 ‘ 10 ‘ 20 ‘ 30 type-(i) AF states have pocket Fermi surfaces in the antin-

U/t odes. This corroborates the fact that the electron scattering
of g = (m,x) that connects two antinodes is crucial for the
tween thed-SC and SF states are shown for some doping ratgs £ 0, appea}rancc-_:‘ ad-SC. Fror_n th"?‘ result, we expect that the SF
L = 12): (a) kinetic energy and (b) interaction energy parts. The symbols a?etate IS. “”"ke')’ to coexist witll-SC becal_Jse Qaps open in
common to all panels. Faf = 0, data forL = 10 and 14 are added. The the antinodes in the SF state, as shown in Fig. 13(d). As an
arrows indicateUsr/t in the SF state fos > 0. The inset in (a) shows the exception, coexistence may be possible for g, where
difference in total energ\E€ = AE; + AEy) for four values o®. the Fermi surfaces extend to the antinodes, as discussed in
Ref. 38. Thus, the SF order probably competes withoHSC
order rather than underlies'#®) We need to directly confirm
(ET)2Cu(CN)s with t'/t ~ 0.8 shows Fermi-liquid-like be- this by examining a mixed state of the SF ah8C orders.
havior aboveT.. Since the present result shows that the SF Einaly, we consider the possibility of the coexistence of AF
state is not stabilized for the casetoft ~ 0.8, the normal ang SF orders. Recently, a Hubbard model with an SF phase,
state ofk-(ET),Cuw(CN); is naturally understood on the baSiSnamelyﬂ-( = HSF+ Hy [see Egs. (1) and (A)], was studied
of Wy. Although our results are consistent with experimentqjsing a VMC method with a mixed state of SF and AF orders,
quantitative discussions will be necessary to determine the &f_ ,- 129 Forg = 0 [Eg. (1) witht’ = 0], the optimized
fective value ofU/t as well agt’/t more accurately for each Wor,ar is reduced toPa, which belongs to the type-(i) AF
compoundt?12) phase. Namely, the SF order is excluded by the type-(i) AF
For the organic conductors with finite doping, we find thagyger, This is probably because the AF order is energetically

¥sris not stabilized aé = 0.11 for bothU/t = 8 and 12, re-  gominant over the SF order, and the loci of Fermi surfaces
gardless of the value df/t. Thus, concerning the pseudogapcompete with each other.

phenomena found in a dope€ET salt’® we cannot conclude
that the SF state is a candidate for the pseudogap phase. Other Conclusions

factors may be necessary to understand this pseudogap. |n this paper, we studied the stability and other properties
of the staggered flux (SF) state in the two-dimensional Hub-

6.4 Related studies and coexistence with other orders  pard model at and near half filling. We carried out systematic

A decade ago, Yang, Rice, and Zhang introduced a phgomputations fotJ/t, t'/t, andé, using a variational Monte
nomenological Green’s function that can represent var€arlo method, which is useful for treating correlated systems.
ous anomalous properties of the pseudogap ptt&s&heir  |n the trial SF state, a configuration-dependent phase factor
Green's function contains a self-energy that reproduces thgs introduced, which is vital to treat a current-carrying state
dyey2-wave RVB state at half filling. For finite doping, thein the regime of Mott physics. In this SF state, we found a
Green’s function is assumed to have the same self-energy ljgod possibility of explaining the pseudogap phenomena in
without the features of SC. On the other hand, the SF stagyh-T, cuprates ang-ET salts. The main results are summa-
used in the present paper is also connected tdthe-wave rized as follows:
RVB state due to the SU(2) symmetry at half filling. For finite (1) The SF state is not stabilized in a weakly correlated
doping, however, the SF state does not show SC. Thereforggime U/t < 5), but becomes considerably stable in a
we expect a close relationship between the present SF stgifngly correlated regime [Figs. 5 and 10(a)]. The physical
and the phenomenological Green’s function, although the eyroperties in the latter regime are consistent with those of the
plicit correspondence is not known. t-J model32.43.44.60The transition from¥y to Wsr at Usg/t

As mentioned in Sect. 1, an AF state was recently studigé probably continuous.
by applying a VMC method with a band-renormalization ef- (2) At half filling (6 = 0), the SF state becomes Mott in-
fect to the Hubbard model on the frustrated square latfice. sylating forU > U, ~ 7t. A metallic SF state is realized for

Fig. 23. (Color online) The two components of the energffetience be-
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Usr < U < U, which is gapless in the charge degree of freefsuchiura, and Yukio Tanaka for useful discussions and in-
dom but gapped in the spin sector. This gap behavior of tHermation. This work was supported in part by Grants-in-Aid

metallic SF state af = 0 continues to the doped cases ofrom the Ministry of Education, Culture, Sports, Science and
U > Use. However, it is distinct from the case of the nonin-Technology.

teracting SF stat®sr in the sense that spin-charge separation ) )

occurs. In doped case¥gr has a segmentary Fermi surface\PPeNdix A Details of Bare Staggered Flux State

near the nodal pointz(2, 7/2) but is gapped near the anti-

nodal (r,0) (Fig. 13). By analyzing the kinetic energids),

we found thatE(Vy) < Ei((¥Wsp) < Ei(¥n) for a largeU/t, (@) v (b) Spin current

meaning that a kinetic-energy-driven SC takes place even

we assume that the SF state is realized adgve 8 8
(3) Although ¥sr is unstable toward phase separation fol
t'/t ~ 0 in accordance with the feature in the model®? B A B B A B
Ysr restores stability against inhomogeneity ot ~ —0.3. B
This aspect is similar to that of AF statés38 113)
- spin {L-spin

(4) For the simple square latticé At = 0), the stable SF
areaisy < 0.1. In the anisotropic triangular latticg’(t| > 0), _ _ _ _ _
this area does not expand. In the frustrated square lattice, hdvg A-1. (Color online) (a) Coordinates in the extended unit cell used in

, . Hsk. (b) Currents in staggered spin current state for up and down spins dis-
ever, thet’ term makes this area expand &OS_ 0.16 for cussed in Appendix C. The arrows denote the directions of easy flow.
-0.4 < t'/t 5 -0.1 (hole-doped cases) but shrink to a very
close vicinity of half filling fort’ /t > 0 (electron-doped cases) hi ) ) finiti fth
(Fig. 15). This change is mostly caused by the sensitivity of " this Appendix, we give a definition of the one-body SF
¥y, to t', while Wer is insensitive ta’ because it is defined statedgr gs«_ad in this gtudy (_see Sect. 2.2) and summarize its
suitably for the square-lattice plaquettes. This result may KI@racteristic propertiefse is the ground state of a nonin-

\ s .
related to the fact that pseudogap behavior is not clearly of2racting SF Hamiltoniagt{="() written as

served in electron-doped cupraté®:13® SF _ o ( A i A
) p - p 7{ =-t Z I:é (CAJ"U_CB],(T + CAI"(TCB]—ZX,O')
(5) On the basis of this study and another stéfiye argue vt
that the SF state does not coexist wit§C as a homogeneous o :
state and is not an underlying normal state from whlebC +€ (CA joCBi—x+y.oc + Cp j’(,.CBj—x—y,rr) + H-C-] (A1)

arises._This is because the SF state has no Fermi surfacgfhe sublattice (A,B) representation [see FigL@)]. Here,
the antinodes necessary for generatif§C. However, when ;o abbreviate; (the position of sitej) as j, andx (y) is the

the optimizeds becomes small (fos ~ Jsg), coexistence is it vector in thex (y) direction. Fom = 0, #SFis reduced to
possible. The coexistence of SF and AF orders also does r),qtt in Eq. (1).45F is diagonalized as

occur fort’/t > —0.0529 further study is needed to clarify
the cases of /t < —0.05. HF = Z [ESF(K) of oo + EST(K) Bl Bro| . (A2)

(6) The local circular current in a plaquette, which is an k.o
order parameter of the SF phase, is strongly suppressed in {{3¢h the band dispersions given as
largeU/t region, but it does not vanish even in the insulating .
phase. A so-called chiral Mott insulator is realized. EX(k) = +2t Sox, (A-3)

(7) We showed that the spin current state (or spin-nematjy applying the unitary transformation
state) is not stabilized for thteJ and Hubbard models.

Because these results are mostly consistent with the behav- ( Cako ) - i( Yok Yok )( ke ) (A-4)
iors in the pseudogap phase of cuprates, the SF state should be CBker v\ 1 -1 B )
reconsidered as a candidate for the anomalous ‘normal stajghere
competing withd-SC in the underdoped regime. Note that the N y
AF state is considerably stabilized in a wide region of the e (¢’ cosky + e’ cosk))
Hubbard modet®) Therefore, possible disordered AF [type- Sok

(i] is another candidate for the pseudogap phase, althougf, Syx given in Eq. (6). The lower band dispersion can be

the symmetry breaking is filerent. Besides this claim, there {yansformed to the form of Eq. (7). The one-body SF state for
are relevant subjects left for future studies. (i) What will bg, < 1is given by filling the lower band as

the phase transition between the SF ak8C states if the 1

SF state is the state at_)O\Te? (i) In this study, we Fre_ated Dgp = 1—[ af 10y = 1—[ il (Ve,k Cho + CE k(r) |0),

the SF andl-SC states independently. However, it is impor- keke(8).0 keke(8).0 V2

tant to check directly whether the two orders coekist 2% (A-6)

and how the coexistent state behaves, if it exi8$9 (i) In  which leads to Eq. (4) by applying the Fourier transformation,

this study, we introduced a phase factor for the doublon-holon 5

processes. It will be worthwhile to search a useful phase factor ¢, = \/i Z €XicAko (A =A,B) (A7)

that controls isolated (doped) holons tr 0. (iv) It will be Ns 4

intriguing to search for a low-lying circular-current state othe ; . ; ; ;

than the SF state and the state proposed by VAPri#:122) Eg;%?jﬁiié;t%vﬁg:;zt; grnré/:g statebsr Is essentially
We thank Yuta Toga, Ryo Sato, Tsutomu Watanabe, Hiroki

Yok = (A'5)

14



J. Phys. Soc. Jpn. DRAFT

0 _'_.;:L;I-\-‘\ M T T T T
@ bard model withJ = 0 (H), E/tis positive because the exact
021 ground state ofH; is @y [PsH® = 0)]. E/t monotonically in-
creases agincreases, as shown in Fig:Zb). For6 ~ 0, Es¢
Z: 04 in Eq. (A-11) increases quadratically as
= 2
X (cosky — cosky)
-0.61- Esr= En + 61 —— 4., (A13)
PR N kel |cOSKy + cosky|
0.8 SFmodel —-—-0.5 “ at least fors = 0. Hence, the SF state is unlikely to be stabi-
S — lized even ifU/t is added as a perturbation; this feature is in
T T T T agreement with that fd < Usg discussed in Sects. 3 and 4.
1.5 (b) Analytic
é‘: [
- 9
VMC /] '
1= §=0 L -
S e - 10
= e 20
i 5=0.08
0.5F 20 . =
L o F i g R
= U/E0 51
Hubbard model 1 g
S S S T S R P —
0/

Fig. A-2. (Color online) Total energies per site @& measured from that
of ®y [Eq. (A-8)] are drawn as functions @f for (a) the SF Hamiltonian
[Eq. (A-1)] and (b) the Hubbard Hamiltonian [Eq. (1)]. In (a), Eqs:-18)
and (A12) are used with a commahin (D.SF anq(HSF as the grgund state. Fig. A-3. (Color online) Energy dispersion of the bare SF siatg for
In (b), Egs. (A9) and (All) are used witl® being varied indsg; we plot several values of along (Q0)-(r, 0)-(/2, 7/2)-(0.0)

VMC data for some cases in addition to the analytic result at half filling. We ’ ? e
confirmed thaf has almost noféect forU = 0.t" is fixed at 0.

(0,0) (m,0) (712, 71/2) (0,0)
k

The (lower) band structure of the bare SF stdié}(k)
[Eq. (A-3)], is shown in Fig. A3 for several values 4. In
the ordinary Fermi sea(= 0), the band top is degenerate
along the AF Brillouin zone edger(0)-(0, 7)-(—, 0)-(0, —n),
namely, the nesting condition is completely satisfied at half

The total energy per site dfsg measured from that of the
bare Fermi seéy is written as

E = Esr— En. (A-8) filling. By introducings, this degeneracy is lifted and the band
Here, Ey for Wy is obtained for the Hubbard model [Eq. (1)tOP becomes located at/@2, 7/2) and the three other equiv-
with U = 0] through alent points. In partlcular,_ for.thﬁ}flux state § = n/4), the
band top forms an isotropic Dirac cone centeredr2,(r/2).
En = iw = 1 ks (A-9) This cone becomes elongated in theQ)-(0, ) direction ag)
Ns (OnlOn) N o decreases from/4.

wheres, [Eq. (8)] is the bare dispersion of an ordinary Fermi This peculiar band structure brings about anomalous prop-

. : erties in®sg. At half filling, the state fo® > 0 is not a con-
sea, andty is obtained for the SF model [Eq. (B] through ventional metal. Although it is not explicitly shown hergk)
1 (@n[H DY) 1

E = ESF(k A10 is a smooth continuous function except for a discontinuity at
NTNs (@nlon) Wsk kZ—O S, (A1) (m/2,7/2), andN(q) = S(q) becomes a quadratic func-
Skr(6=0) tion of |q| for |g| — 0. Ina doped case, a Fermi surface appears

The energy ofbsr for the Hubbard model is given by that is made of a cross section of the elongated Dirac cone
2 neark = (r/2,7/2), which is shown in Fig. A for some
Eepr = (DsAH|Psp) _ _ 2tcosd (COSKX + COSkV) . values ofé ands and is reminiscent of a Fermi arc or hole
Ng(@sHDsE) Ns kT Sox pocket observed in cuprates by ARPES and so forth. This is
(A-11) incontrast to thel-SC stateby, in which the Fermi surface is
and that for the SF Hamiltonian is given by a point on the nodal line irrespective of the valug ofs § in-
SF creases of decreases, this segmentary Fermi surfac®%f
SF= 1 (PsHH™1Pse) = 1 ESF(k). (A-12) becomes longer, and the gap region shrinks to the vicinity of
Ns  (DsAPsp) Ns keke(®).c the antinodal points. However, the behaviolNtf]) [= S(q)]

. ~ . for |g| — 0 in dopeddgk is basically unchanged from that
SF

In Fig. A?(a)H we ShowE/t f(ojr H ;fsg fEnCt'oonhoﬁ)a B_e' at half filling. This gap behavior iers from the case of the
causql?sp Is the exact groun St"?‘te »E/t<0ho s,_at metallic SF statePsk for U > Ugp, as discussed in Sects. 3.3
half filling, Esg and Ey are identical because the Fermi SUland 4.2

faces of®y and Ose are identical, but the energy disg is

. . The local circular current defined by Eq. (18) is calculated
sizably reduced as or ¢ increases. In contrast, for the Hub- yEq. (18)
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Fig. A-4.
points neakr (k € kg) for L = 1000 are plotted. Ther(r)-folded Brillouin zone edge is shown by a gray dash-dotted line.

~ T T
(2) (O (©)
6/7=0.0625 0/7=0.125 6/7=0.25
~i6=0 “ls=0
02 b \ SN % .
L L = I I I R
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(Color online) Fermi surfaces of the bare SF stage shown for (a)p = 0.0625, (b)9 = 0.125, and (cp = 0.25 (x flux) for some doping rate

T T T T T T
rU=0 & (L=200) == 1
LSp— 00 . Hy, = JZ(S 'S - Zninj)’ (B-3)
rrrrrrr - 0.1 1 o,
—— — 0.2 L 12 : J
- Y - Y T B
= U2 5] Hasie = -7 Z (T g
? E Jr#T 0
] +8l,. G0 Curr) . (B-4)
b j+1,—o b oA )
where iy = Cjo(1 - njy), fij = %,& &y, andS; =
3 s Cl,TasCip With o being the Pauli matrix fos = 1/2

Fig. A-5. (Color online) Local circular currents of one-body SF staigr)
are shown as functions of Peierls phase for four doping rates. The data
numerically computed using Eq. (84) for L = 200. For comparison, VMC
data of¥sg for U/t = 12 andL = 12 are shown for four values éf

Ring terms for simplicity.

spins. We caltH;-; thet-J model andH3 the three-site model.
In doped cases, the behavior of the Hubbard model should be
more similar to that ofH3. Here, we disregard diagonal hop-

To these models, we apply a VMC scheme similar to that
for the Hubbard model. As a many-body factor, we use only

the complete Gutzwiller projecto®? = g with g = 0,

as in previous studie®:4344.60Thys, ¥ge

for dsgas

2
_ 2tsing (cosky — cosky) Py,

c= ,
Ns keke(6).0 Sex

A-14 -
(A19) E = ES(9) - EN,
and is shown in Fig. /5; the optimalé is always 0 for WhereEN = ESF(6 = 0).

the Hubbard model [Fig. &(a)]. For comparison, data for

strongly correlated cases are also plotted. Here, we only point

= Pc(0)DsH0)

[¥n = Pc(0)Dy] has one [no] variational parameter. Here,
we concentrate on the decrease in energygffrom that of

(B-5)

out two notable features. (i) AsincreasesJc| decreases for L S — S——

the noninteractingbsr, while |J¢| increases for the strongly
correlated¥sg for the Hubbard model withJ/t = 12. (i) As
the interaction increaseldc| is markedly reduced.

-0.02f¢
Appendix B: Staggered Flux State fort-J Model -0.04

In this Appendix, we summarize the stability of the SF state
in t-J-type models with calculations of reliable accuracy for a

E

-0.06

comparison with the Hubbard model treated in the main text.
For this purpose, we include the following three-site (or pair-
hopping) termHsgie, Which is the same order &4 [t2/U

(= J/4)] in the strong-coupling expansion:

Hi-3 = Hy + H;, Hz = Hi-3 + Hasite

-0.08

(Bl) .‘ 1 . 1 . 1

with 0/

H (B-2)

= -t > (& & +Hc),

(B)Xe

0.5

Fig. B-1. (Qolor online) Exchange energy per sig/J of ¥sg measured
from that of Py at half filling as a function of. The graph is symmetric with

respect tod/n = 1/4 (n-flux). The inset shows the magnification near the
minimum @opy) of the smallew. Data for four values of are compared.
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First, we consider the half-filled casé € 0), in whichE;
(= (H)/Ns) and Essite (= (Hasite)/Ns) vanish; the total en-
ergy is given by the exchange teftn= E; = (H;)/Ns. In
Fig. B-1, we plotE;/J (= E/J) as a function o®. E; has
a minimum  atd/n ~ 0.08. Becausélsr is equivalent to the
d-SC state¥y = Pc®q owing to the SU(2) symmetsf; 52
the minimum energy offse [e.g., ESF/J = -1.1396(4) for
L = 10] coincides with that off [Ed]/J = -1.1398]% This

value is very low and broadly comparable to the minimum

energy of the AF state on the same fOOtiﬁgs,F = Pc¥ar
[EAF/J -
half filling irrespective of the value af/t.

For doped cases (> 0), E; and Ezjie also make contribu-

tions. Figure B2 shows the dependence of the three energy

components o‘ﬁ’sp measured from those 8fy. By introduc-
ing 6, the exchange energy is lowerdf;(J < 0), similarly
to the case of half filling, in a wide range 6f[Fig. B-2(a)];
|E;|/tis large, especially near half filling. In contrakt/t and
Easite/ J monotonically increase witlh, namely, they desta-
bilize the SF state, and become more marked axreases
[Figs. B2(b) and B2(c)]. For fixed values ob and J/t, the

—-1.1412]%® Thus, the SF state is very stable at

(a)
AE,; AE; L

—t—a— 20
14
~10

J/t=0.3

(b)

t-J 3site L
-0 ——a— 14
- 10

0.1 208

Opt/ v

T 0.05
J/t=0.3

: Staggered flux

0.2

total energyk/t is the sum of these competing components.

For example, in Fig. B, we plotE/t for thet-J and three-site
models for typical values @fandJ/t of underdoped cuprates.
We find thatWgg is stable with respect t&y in a wide range

Fig. B-4. (Color online) (a) Doping rate dependence of energy gain of SF
state measured from the energy'®y for the t-J (AE,) and the three-site
(AE3) models. Data for three values bfare plotted for each model. (b)

of J/t. Becauseégsite/.] is disadvantageous to the SF statéptimized values of in SF state as functions of doping rate.

[Fig. B-2(c)], the decrease iB3/t is somewhat smaller than
that inE;_j/t.
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Fig. B-3. (Coloronline) Total energies of the SF staig;f) measured from

that of Wy plotted as a function of for (a) thet-J model and (b) the three-
site model. The doping rate is fixed at 0.08 and the valueBtodre chosen
appropriately for cuprates. The valuesft in (b) are converted using =
4t2/U. Arrows in both panels indicate the energy gakis/t by the SF state
for J/t=0.3

Finally, we look at thef dependence of the stability Bfse.
In Fig. B-4(a), we plot the energy gain orftBrence of'sg as
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compared withPy, defined as
AE(SF)= E(N) — E(SF), (B-6)

for J/t = 0.3. Note thatAE has the inverse sign t&. In

Fig. B-4(b), we show the optimize@ (6op). The behavior of

Bopt is similar to that ofE, but Bopt Vanishes abruptly at the
boundaryssg owing to finite-size fects. From the system-

size dependence, the range of the SF state seems to expand to
some extent in the thermodynamic limit.

Appendix C: Staggered Spin Current State

In this Appendix, we study the staggered spin cur-
rent (SSC) statéPssc = Pdssc?? %364 as illustrated in
Fig. A-1(b). The one-body statabssc is obtained as the
ground state of the noninteracting SSC model written as

FSSC — _¢ Z [eies((f) (C;i,JcBi’”' +Cj, (TCBi—ZX,o')
ieAo
g i0s(o) (CZI +Caixsyo + CAI O_CBi—X—y,D') + H.C.], (C1)

wheres(c) = 1 or -1 according to whether =1 or |. HSSC
is diagonalized in the same way &5°F. The energy disper-
sion is identical t&ESF(k) [Eq. (A-3)]. Consequently, we have

1 G
®SSC= l—l 7 [YE(Q) Chyo + CBk(r] 10), (C2)
kEkF,(T
ek (€9%7) cosky + €1%7) cosk,)
yz(e) _ (C3)

Sox

®SSChas a doubled unit cell but, in contrast¥gg, it has no
magnetic flux and preserves the time-reversal symmetry. The
SU(2) symmetry is broken i®SSC€even at half filling.
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